Spaces:
Running
Running
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py | |
| # also released under the MIT license. | |
| import argparse | |
| from concurrent.futures import ProcessPoolExecutor | |
| import logging | |
| import os | |
| from pathlib import Path | |
| import subprocess as sp | |
| import sys | |
| from tempfile import NamedTemporaryFile | |
| import time | |
| import typing as tp | |
| import warnings | |
| from einops import rearrange | |
| import torch | |
| import gradio as gr | |
| from audiocraft.data.audio_utils import convert_audio | |
| from audiocraft.data.audio import audio_write | |
| from audiocraft.models.encodec import InterleaveStereoCompressionModel | |
| from audiocraft.models import MusicGen, MultiBandDiffusion | |
| MODEL = None # Last used model | |
| SPACE_ID = os.environ.get('SPACE_ID', '') | |
| IS_BATCHED = "facebook/MusicGen" in SPACE_ID or 'musicgen-internal/musicgen_dev' in SPACE_ID | |
| print(IS_BATCHED) | |
| MAX_BATCH_SIZE = 12 | |
| BATCHED_DURATION = 15 | |
| INTERRUPTING = False | |
| MBD = None | |
| # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform | |
| _old_call = sp.call | |
| def _call_nostderr(*args, **kwargs): | |
| # Avoid ffmpeg vomiting on the logs. | |
| kwargs['stderr'] = sp.DEVNULL | |
| kwargs['stdout'] = sp.DEVNULL | |
| _old_call(*args, **kwargs) | |
| sp.call = _call_nostderr | |
| # Preallocating the pool of processes. | |
| pool = ProcessPoolExecutor(4) | |
| pool.__enter__() | |
| def interrupt(): | |
| global INTERRUPTING | |
| INTERRUPTING = True | |
| class FileCleaner: | |
| def __init__(self, file_lifetime: float = 3600): | |
| self.file_lifetime = file_lifetime | |
| self.files = [] | |
| def add(self, path: tp.Union[str, Path]): | |
| self._cleanup() | |
| self.files.append((time.time(), Path(path))) | |
| def _cleanup(self): | |
| now = time.time() | |
| for time_added, path in list(self.files): | |
| if now - time_added > self.file_lifetime: | |
| if path.exists(): | |
| path.unlink() | |
| self.files.pop(0) | |
| else: | |
| break | |
| file_cleaner = FileCleaner() | |
| def make_waveform(*args, **kwargs): | |
| # Further remove some warnings. | |
| be = time.time() | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter('ignore') | |
| out = gr.make_waveform(*args, **kwargs) | |
| print("Make a video took", time.time() - be) | |
| return out | |
| def load_model(version='facebook/musicgen-melody'): | |
| global MODEL | |
| print("Loading model", version) | |
| if MODEL is None or MODEL.name != version: | |
| # Clear PyTorch CUDA cache and delete model | |
| del MODEL | |
| torch.cuda.empty_cache() | |
| MODEL = None # in case loading would crash | |
| MODEL = MusicGen.get_pretrained(version) | |
| def load_diffusion(): | |
| global MBD | |
| if MBD is None: | |
| print("loading MBD") | |
| MBD = MultiBandDiffusion.get_mbd_musicgen() | |
| def _do_predictions(texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs): | |
| MODEL.set_generation_params(duration=duration, **gen_kwargs) | |
| print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies]) | |
| be = time.time() | |
| processed_melodies = [] | |
| target_sr = 32000 | |
| target_ac = 1 | |
| for melody in melodies: | |
| if melody is None: | |
| processed_melodies.append(None) | |
| else: | |
| sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() | |
| if melody.dim() == 1: | |
| melody = melody[None] | |
| melody = melody[..., :int(sr * duration)] | |
| melody = convert_audio(melody, sr, target_sr, target_ac) | |
| processed_melodies.append(melody) | |
| try: | |
| if any(m is not None for m in processed_melodies): | |
| outputs = MODEL.generate_with_chroma( | |
| descriptions=texts, | |
| melody_wavs=processed_melodies, | |
| melody_sample_rate=target_sr, | |
| progress=progress, | |
| return_tokens=USE_DIFFUSION | |
| ) | |
| else: | |
| outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION) | |
| except RuntimeError as e: | |
| raise gr.Error("Error while generating " + e.args[0]) | |
| if USE_DIFFUSION: | |
| if gradio_progress is not None: | |
| gradio_progress(1, desc='Running MultiBandDiffusion...') | |
| tokens = outputs[1] | |
| if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): | |
| left, right = MODEL.compression_model.get_left_right_codes(tokens) | |
| tokens = torch.cat([left, right]) | |
| outputs_diffusion = MBD.tokens_to_wav(tokens) | |
| if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): | |
| assert outputs_diffusion.shape[1] == 1 # output is mono | |
| outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2) | |
| outputs = torch.cat([outputs[0], outputs_diffusion], dim=0) | |
| outputs = outputs.detach().cpu().float() | |
| pending_videos = [] | |
| out_wavs = [] | |
| for output in outputs: | |
| with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
| audio_write( | |
| file.name, output, MODEL.sample_rate, strategy="loudness", | |
| loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
| pending_videos.append(pool.submit(make_waveform, file.name)) | |
| out_wavs.append(file.name) | |
| file_cleaner.add(file.name) | |
| out_videos = [pending_video.result() for pending_video in pending_videos] | |
| for video in out_videos: | |
| file_cleaner.add(video) | |
| print("batch finished", len(texts), time.time() - be) | |
| print("Tempfiles currently stored: ", len(file_cleaner.files)) | |
| return out_videos, out_wavs | |
| def predict_batched(texts, melodies): | |
| max_text_length = 512 | |
| texts = [text[:max_text_length] for text in texts] | |
| load_model('facebook/musicgen-stereo-melody') | |
| res = _do_predictions(texts, melodies, BATCHED_DURATION) | |
| return res | |
| def predict_full(model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()): | |
| global INTERRUPTING | |
| global USE_DIFFUSION | |
| INTERRUPTING = False | |
| progress(0, desc="Loading model...") | |
| model_path = model_path.strip() | |
| if model_path: | |
| if not Path(model_path).exists(): | |
| raise gr.Error(f"Model path {model_path} doesn't exist.") | |
| if not Path(model_path).is_dir(): | |
| raise gr.Error(f"Model path {model_path} must be a folder containing " | |
| "state_dict.bin and compression_state_dict_.bin.") | |
| model = model_path | |
| if temperature < 0: | |
| raise gr.Error("Temperature must be >= 0.") | |
| if topk < 0: | |
| raise gr.Error("Topk must be non-negative.") | |
| if topp < 0: | |
| raise gr.Error("Topp must be non-negative.") | |
| topk = int(topk) | |
| if decoder == "MultiBand_Diffusion": | |
| USE_DIFFUSION = True | |
| progress(0, desc="Loading diffusion model...") | |
| load_diffusion() | |
| else: | |
| USE_DIFFUSION = False | |
| load_model(model) | |
| max_generated = 0 | |
| def _progress(generated, to_generate): | |
| nonlocal max_generated | |
| max_generated = max(generated, max_generated) | |
| progress((min(max_generated, to_generate), to_generate)) | |
| if INTERRUPTING: | |
| raise gr.Error("Interrupted.") | |
| MODEL.set_custom_progress_callback(_progress) | |
| videos, wavs = _do_predictions( | |
| [text], [melody], duration, progress=True, | |
| top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, | |
| gradio_progress=progress) | |
| if USE_DIFFUSION: | |
| return videos[0], wavs[0], videos[1], wavs[1] | |
| return videos[0], wavs[0], None, None | |
| def toggle_audio_src(choice): | |
| if choice == "mic": | |
| return gr.update(source="microphone", value=None, label="Microphone") | |
| else: | |
| return gr.update(source="upload", value=None, label="File") | |
| def toggle_diffusion(choice): | |
| if choice == "MultiBand_Diffusion": | |
| return [gr.update(visible=True)] * 2 | |
| else: | |
| return [gr.update(visible=False)] * 2 | |
| def ui_full(launch_kwargs): | |
| with gr.Blocks() as interface: | |
| gr.Markdown( | |
| """ | |
| # MusicGen | |
| This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), | |
| a simple and controllable model for music generation | |
| presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| text = gr.Text(label="Input Text", interactive=True) | |
| with gr.Column(): | |
| radio = gr.Radio(["file", "mic"], value="file", | |
| label="Condition on a melody (optional) File or Mic") | |
| melody = gr.Audio(sources=["upload"], type="numpy", label="File", | |
| interactive=True, elem_id="melody-input") | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
| _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) | |
| with gr.Row(): | |
| model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small", | |
| "facebook/musicgen-large", "facebook/musicgen-melody-large", | |
| "facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium", | |
| "facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large", | |
| "facebook/musicgen-stereo-melody-large"], | |
| label="Model", value="facebook/musicgen-stereo-melody", interactive=True) | |
| model_path = gr.Text(label="Model Path (custom models)") | |
| with gr.Row(): | |
| decoder = gr.Radio(["Default", "MultiBand_Diffusion"], | |
| label="Decoder", value="Default", interactive=True) | |
| with gr.Row(): | |
| duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) | |
| with gr.Row(): | |
| topk = gr.Number(label="Top-k", value=250, interactive=True) | |
| topp = gr.Number(label="Top-p", value=0, interactive=True) | |
| temperature = gr.Number(label="Temperature", value=1.0, interactive=True) | |
| cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) | |
| with gr.Column(): | |
| output = gr.Video(label="Generated Music") | |
| audio_output = gr.Audio(label="Generated Music (wav)", type='filepath') | |
| diffusion_output = gr.Video(label="MultiBand Diffusion Decoder") | |
| audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath') | |
| submit.click(toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False, | |
| show_progress=False).then(predict_full, inputs=[model, model_path, decoder, text, melody, duration, topk, topp, | |
| temperature, cfg_coef], | |
| outputs=[output, audio_output, diffusion_output, audio_diffusion]) | |
| radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) | |
| gr.Examples( | |
| fn=predict_full, | |
| examples=[ | |
| [ | |
| "An 80s driving pop song with heavy drums and synth pads in the background", | |
| "./assets/bach.mp3", | |
| "facebook/musicgen-stereo-melody", | |
| "Default" | |
| ], | |
| [ | |
| "A cheerful country song with acoustic guitars", | |
| "./assets/bolero_ravel.mp3", | |
| "facebook/musicgen-stereo-melody", | |
| "Default" | |
| ], | |
| [ | |
| "90s rock song with electric guitar and heavy drums", | |
| None, | |
| "facebook/musicgen-stereo-medium", | |
| "Default" | |
| ], | |
| [ | |
| "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", | |
| "./assets/bach.mp3", | |
| "facebook/musicgen-stereo-melody", | |
| "Default" | |
| ], | |
| [ | |
| "lofi slow bpm electro chill with organic samples", | |
| None, | |
| "facebook/musicgen-stereo-medium", | |
| "Default" | |
| ], | |
| [ | |
| "Punk rock with loud drum and power guitar", | |
| None, | |
| "facebook/musicgen-stereo-medium", | |
| "MultiBand_Diffusion" | |
| ], | |
| ], | |
| inputs=[text, melody, model, decoder], | |
| outputs=[output] | |
| ) | |
| gr.Markdown( | |
| """ | |
| ### More details | |
| The model will generate a short music extract based on the description you provided. | |
| The model can generate up to 30 seconds of audio in one pass. | |
| The model was trained with description from a stock music catalog, descriptions that will work best | |
| should include some level of details on the instruments present, along with some intended use case | |
| (e.g. adding "perfect for a commercial" can somehow help). | |
| Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio | |
| from which a broad melody will be extracted. | |
| The model will then try to follow both the description and melody provided. | |
| For best results, the melody should be 30 seconds long (I know, the samples we provide are not...) | |
| It is now possible to extend the generation by feeding back the end of the previous chunk of audio. | |
| This can take a long time, and the model might lose consistency. The model might also | |
| decide at arbitrary positions that the song ends. | |
| **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). | |
| An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds | |
| are generated each time. | |
| We present 10 model variations: | |
| 1. facebook/musicgen-melody -- a music generation model capable of generating music condition | |
| on text and melody inputs. **Note**, you can also use text only. | |
| 2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only. | |
| 3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only. | |
| 4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only. | |
| 5. facebook/musicgen-melody-large -- a 3.3B transformer decoder conditioned on and melody. | |
| 6. facebook/musicgen-stereo-*: same as the previous models but fine tuned to output stereo audio. | |
| We also present two way of decoding the audio tokens | |
| 1. Use the default GAN based compression model. It can suffer from artifacts especially | |
| for crashes, snares etc. | |
| 2. Use [MultiBand Diffusion](https://arxiv.org/abs/2308.02560). Should improve the audio quality, | |
| at an extra computational cost. When this is selected, we provide both the GAN based decoded | |
| audio, and the one obtained with MBD. | |
| See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md) | |
| for more details. | |
| """ | |
| ) | |
| interface.queue().launch(**launch_kwargs) | |
| def ui_batched(launch_kwargs): | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # MusicGen | |
| This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md), | |
| a simple and controllable model for music generation | |
| presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). | |
| <br/> | |
| <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" | |
| style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" | |
| src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| for longer sequences, more control and no queue.</p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| text = gr.Text(label="Describe your music", lines=2, interactive=True) | |
| with gr.Column(): | |
| radio = gr.Radio(["file", "mic"], value="file", | |
| label="Condition on a melody (optional) File or Mic") | |
| melody = gr.Audio(source="upload", type="numpy", label="File", | |
| interactive=True, elem_id="melody-input") | |
| with gr.Row(): | |
| submit = gr.Button("Generate") | |
| with gr.Column(): | |
| output = gr.Video(label="Generated Music") | |
| audio_output = gr.Audio(label="Generated Music (wav)", type='filepath') | |
| submit.click(predict_batched, inputs=[text, melody], | |
| outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE) | |
| radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) | |
| gr.Examples( | |
| fn=predict_batched, | |
| examples=[ | |
| [ | |
| "An 80s driving pop song with heavy drums and synth pads in the background", | |
| "./assets/bach.mp3", | |
| ], | |
| [ | |
| "A cheerful country song with acoustic guitars", | |
| "./assets/bolero_ravel.mp3", | |
| ], | |
| [ | |
| "90s rock song with electric guitar and heavy drums", | |
| None, | |
| ], | |
| [ | |
| "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", | |
| "./assets/bach.mp3", | |
| ], | |
| [ | |
| "lofi slow bpm electro chill with organic samples", | |
| None, | |
| ], | |
| ], | |
| inputs=[text, melody], | |
| outputs=[output] | |
| ) | |
| gr.Markdown(""" | |
| ### More details | |
| The model will generate 15 seconds of audio based on the description you provided. | |
| The model was trained with description from a stock music catalog, descriptions that will work best | |
| should include some level of details on the instruments present, along with some intended use case | |
| (e.g. adding "perfect for a commercial" can somehow help). | |
| You can optionally provide a reference audio from which a broad melody will be extracted. | |
| The model will then try to follow both the description and melody provided. | |
| For best results, the melody should be 30 seconds long (I know, the samples we provide are not...) | |
| You can access more control (longer generation, more models etc.) by clicking | |
| the <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" | |
| style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" | |
| src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| (you will then need a paid GPU from HuggingFace). | |
| If you have a GPU, you can run the gradio demo locally (click the link to our repo below for more info). | |
| Finally, you can get a GPU for free from Google | |
| and run the demo in [a Google Colab.](https://ai.honu.io/red/musicgen-colab). | |
| See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md) | |
| for more details. All samples are generated with the `stereo-melody` model. | |
| """) | |
| demo.queue(max_size=8 * 4).launch(**launch_kwargs) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '--listen', | |
| type=str, | |
| default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', | |
| help='IP to listen on for connections to Gradio', | |
| ) | |
| parser.add_argument( | |
| '--username', type=str, default='', help='Username for authentication' | |
| ) | |
| parser.add_argument( | |
| '--password', type=str, default='', help='Password for authentication' | |
| ) | |
| parser.add_argument( | |
| '--server_port', | |
| type=int, | |
| default=0, | |
| help='Port to run the server listener on', | |
| ) | |
| parser.add_argument( | |
| '--inbrowser', action='store_true', help='Open in browser' | |
| ) | |
| parser.add_argument( | |
| '--share', action='store_true', help='Share the gradio UI' | |
| ) | |
| args = parser.parse_args() | |
| launch_kwargs = {} | |
| launch_kwargs['server_name'] = args.listen | |
| if args.username and args.password: | |
| launch_kwargs['auth'] = (args.username, args.password) | |
| if args.server_port: | |
| launch_kwargs['server_port'] = args.server_port | |
| if args.inbrowser: | |
| launch_kwargs['inbrowser'] = args.inbrowser | |
| if args.share: | |
| launch_kwargs['share'] = args.share | |
| logging.basicConfig(level=logging.INFO, stream=sys.stderr) | |
| # Show the interface | |
| if IS_BATCHED: | |
| global USE_DIFFUSION | |
| USE_DIFFUSION = False | |
| ui_batched(launch_kwargs) | |
| else: | |
| ui_full(launch_kwargs) | |