Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
add overview + more info
Browse files- app.py +158 -21
- content.py +7 -5
app.py
CHANGED
|
@@ -171,7 +171,11 @@ class LeaderboardData:
|
|
| 171 |
"""
|
| 172 |
local_df = eval_results[split]
|
| 173 |
local_df = local_df.map(
|
| 174 |
-
lambda row: {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
filtered_columns = (
|
| 177 |
PRE_COLUMN_NAMES
|
|
@@ -195,8 +199,9 @@ class LeaderboardData:
|
|
| 195 |
df[f"{subsplit}_forces_mae"] = df[f"{subsplit}_forces_mae"]
|
| 196 |
df = df.rename(
|
| 197 |
columns={
|
| 198 |
-
f"{subsplit}_energy_mae": "Energy MAE
|
| 199 |
-
f"{subsplit}_forces_mae": "Forces MAE
|
|
|
|
| 200 |
}
|
| 201 |
)
|
| 202 |
return df
|
|
@@ -207,7 +212,11 @@ class LeaderboardData:
|
|
| 207 |
"""
|
| 208 |
local_df = eval_results[split]
|
| 209 |
local_df = local_df.map(
|
| 210 |
-
lambda row: {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
)
|
| 212 |
eval_columns = LEADERBOARD_COLUMNS[split]
|
| 213 |
filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
|
|
@@ -242,18 +251,19 @@ LEADERBOARD_COLUMNS = {
|
|
| 242 |
}
|
| 243 |
|
| 244 |
COLUMN_MAPPING = {
|
| 245 |
-
"interaction_energy_mae": "Ixn Energy
|
| 246 |
-
"interaction_forces_mae": "Ixn Forces
|
| 247 |
-
"strain_energy_mae": "Strain Energy
|
| 248 |
-
"deltaE_mae": "\u0394Energy MAE
|
| 249 |
-
"deltaF_mae": "\u0394Forces MAE
|
| 250 |
"ensemble_rmsd": "RMSD [Å]",
|
| 251 |
"global_min_rmsd": "RMSD [Å]",
|
| 252 |
"rmsd": "RMSD [Å]",
|
| 253 |
-
"lr_ddE_mae": "\u0394Energy (LR) MAE [meV]",
|
| 254 |
-
"lr_ddF_mae": "\u0394Forces (LR) MAE [meV/Å]",
|
| 255 |
-
"sr_ddE_mae": "\u0394Energy (SR) MAE [meV]",
|
| 256 |
-
"sr_ddF_mae": "\u0394Forces (SR) MAE [meV/Å]",
|
|
|
|
| 257 |
}
|
| 258 |
|
| 259 |
|
|
@@ -262,7 +272,9 @@ def add_new_eval(
|
|
| 262 |
eval_type: str,
|
| 263 |
organization: str,
|
| 264 |
model: str,
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
mail: str,
|
| 267 |
training_set: str,
|
| 268 |
additional_info: str,
|
|
@@ -331,8 +343,10 @@ def add_new_eval(
|
|
| 331 |
"Organization": organization,
|
| 332 |
"Submission date": submission_time,
|
| 333 |
"Training Set": training_set,
|
|
|
|
|
|
|
|
|
|
| 334 |
"Notes": additional_info,
|
| 335 |
-
"url": url,
|
| 336 |
}
|
| 337 |
eval_entry.update(metrics)
|
| 338 |
|
|
@@ -388,7 +402,10 @@ def add_new_eval(
|
|
| 388 |
|
| 389 |
|
| 390 |
def create_dataframe_tab(
|
| 391 |
-
tab_name: str,
|
|
|
|
|
|
|
|
|
|
| 392 |
) -> gr.Tab:
|
| 393 |
"""
|
| 394 |
Create a tab with a dataframe.
|
|
@@ -396,12 +413,19 @@ def create_dataframe_tab(
|
|
| 396 |
if datatype is None:
|
| 397 |
datatype = TYPES
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
with gr.Tab(tab_name) as tab:
|
| 400 |
gr.Dataframe(
|
| 401 |
value=df,
|
| 402 |
datatype=datatype,
|
| 403 |
interactive=False,
|
| 404 |
-
|
|
|
|
| 405 |
)
|
| 406 |
return tab
|
| 407 |
|
|
@@ -425,15 +449,121 @@ def create_s2ef_tabs(split: str, results_dfs: Dict[str, pd.DataFrame]) -> None:
|
|
| 425 |
|
| 426 |
def create_evaluation_tabs(results_dfs: Dict[str, pd.DataFrame]) -> None:
|
| 427 |
"""
|
| 428 |
-
Create evaluation tabs for non-S2EF evaluations.
|
| 429 |
"""
|
| 430 |
eval_datatype = ["markdown", "markdown", "number", "str"]
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
for eval_type in OTHER_EVAL_TYPES:
|
| 433 |
display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
|
| 434 |
create_dataframe_tab(display_name, results_dfs[eval_type], eval_datatype)
|
| 435 |
|
| 436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
def create_submission_interface() -> Tuple[gr.components.Component, ...]:
|
| 438 |
"""
|
| 439 |
Create the submission interface components.
|
|
@@ -444,7 +574,11 @@ def create_submission_interface() -> Tuple[gr.components.Component, ...]:
|
|
| 444 |
with gr.Row():
|
| 445 |
with gr.Column():
|
| 446 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
dataset = gr.Dropdown(
|
| 449 |
choices=["OMol-All", "OMol-4M", "UMA-459M", "Other"],
|
| 450 |
label="Training set",
|
|
@@ -478,6 +612,8 @@ def create_submission_interface() -> Tuple[gr.components.Component, ...]:
|
|
| 478 |
organization,
|
| 479 |
model_name_textbox,
|
| 480 |
model_url,
|
|
|
|
|
|
|
| 481 |
mail,
|
| 482 |
dataset,
|
| 483 |
additional_info,
|
|
@@ -523,6 +659,8 @@ def create_interface() -> gr.Blocks:
|
|
| 523 |
organization,
|
| 524 |
model_name_textbox,
|
| 525 |
model_url,
|
|
|
|
|
|
|
| 526 |
mail,
|
| 527 |
dataset,
|
| 528 |
additional_info,
|
|
@@ -531,7 +669,7 @@ def create_interface() -> gr.Blocks:
|
|
| 531 |
|
| 532 |
submit_button.click(
|
| 533 |
lambda x: "Coming soon :)",
|
| 534 |
-
|
| 535 |
submission_result,
|
| 536 |
# add_new_eval,
|
| 537 |
# [
|
|
@@ -545,7 +683,6 @@ def create_interface() -> gr.Blocks:
|
|
| 545 |
# additional_info,
|
| 546 |
# ],
|
| 547 |
# submission_result,
|
| 548 |
-
|
| 549 |
)
|
| 550 |
|
| 551 |
return demo
|
|
|
|
| 171 |
"""
|
| 172 |
local_df = eval_results[split]
|
| 173 |
local_df = local_df.map(
|
| 174 |
+
lambda row: {
|
| 175 |
+
"Model": model_hyperlink(
|
| 176 |
+
row["model_url"], row["paper_url"], row["Model"]
|
| 177 |
+
)
|
| 178 |
+
}
|
| 179 |
)
|
| 180 |
filtered_columns = (
|
| 181 |
PRE_COLUMN_NAMES
|
|
|
|
| 199 |
df[f"{subsplit}_forces_mae"] = df[f"{subsplit}_forces_mae"]
|
| 200 |
df = df.rename(
|
| 201 |
columns={
|
| 202 |
+
f"{subsplit}_energy_mae": "Energy MAE\n[meV]",
|
| 203 |
+
f"{subsplit}_forces_mae": "Forces MAE\n[meV/Å]",
|
| 204 |
+
"Energy Conserving": "Energy\nConserving",
|
| 205 |
}
|
| 206 |
)
|
| 207 |
return df
|
|
|
|
| 212 |
"""
|
| 213 |
local_df = eval_results[split]
|
| 214 |
local_df = local_df.map(
|
| 215 |
+
lambda row: {
|
| 216 |
+
"Model": model_hyperlink(
|
| 217 |
+
row["model_url"], row["paper_url"], row["Model"]
|
| 218 |
+
)
|
| 219 |
+
}
|
| 220 |
)
|
| 221 |
eval_columns = LEADERBOARD_COLUMNS[split]
|
| 222 |
filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
|
|
|
|
| 251 |
}
|
| 252 |
|
| 253 |
COLUMN_MAPPING = {
|
| 254 |
+
"interaction_energy_mae": "Ixn Energy\nMAE [meV]",
|
| 255 |
+
"interaction_forces_mae": "Ixn Forces\nMAE [meV/Å]",
|
| 256 |
+
"strain_energy_mae": "Strain Energy\nMAE [meV]",
|
| 257 |
+
"deltaE_mae": "\u0394Energy MAE\n[meV]",
|
| 258 |
+
"deltaF_mae": "\u0394Forces MAE\n[meV/Å]",
|
| 259 |
"ensemble_rmsd": "RMSD [Å]",
|
| 260 |
"global_min_rmsd": "RMSD [Å]",
|
| 261 |
"rmsd": "RMSD [Å]",
|
| 262 |
+
"lr_ddE_mae": "\u0394Energy (LR)\n MAE [meV]",
|
| 263 |
+
"lr_ddF_mae": "\u0394Forces (LR)\n MAE [meV/Å]",
|
| 264 |
+
"sr_ddE_mae": "\u0394Energy (SR)\n MAE [meV]",
|
| 265 |
+
"sr_ddF_mae": "\u0394Forces (SR)\n MAE [meV/Å]",
|
| 266 |
+
"Energy Conserving": "Energy\nConserving",
|
| 267 |
}
|
| 268 |
|
| 269 |
|
|
|
|
| 272 |
eval_type: str,
|
| 273 |
organization: str,
|
| 274 |
model: str,
|
| 275 |
+
model_url: str,
|
| 276 |
+
paper_url: str,
|
| 277 |
+
energy_conserving: bool,
|
| 278 |
mail: str,
|
| 279 |
training_set: str,
|
| 280 |
additional_info: str,
|
|
|
|
| 343 |
"Organization": organization,
|
| 344 |
"Submission date": submission_time,
|
| 345 |
"Training Set": training_set,
|
| 346 |
+
"Energy Conserving": "✅" if energy_conserving else "",
|
| 347 |
+
"model_url": model_url,
|
| 348 |
+
"paper_url": paper_url,
|
| 349 |
"Notes": additional_info,
|
|
|
|
| 350 |
}
|
| 351 |
eval_entry.update(metrics)
|
| 352 |
|
|
|
|
| 402 |
|
| 403 |
|
| 404 |
def create_dataframe_tab(
|
| 405 |
+
tab_name: str,
|
| 406 |
+
df: pd.DataFrame,
|
| 407 |
+
datatype: List[str] = None,
|
| 408 |
+
widths: List[str] = None,
|
| 409 |
) -> gr.Tab:
|
| 410 |
"""
|
| 411 |
Create a tab with a dataframe.
|
|
|
|
| 413 |
if datatype is None:
|
| 414 |
datatype = TYPES
|
| 415 |
|
| 416 |
+
if widths is None:
|
| 417 |
+
num_cols = len(df.columns)
|
| 418 |
+
fixed_cols = len(PRE_COLUMN_NAMES) + len(POST_COLUMN_NAMES)
|
| 419 |
+
# Model | Organization |Energy Conserving | Training Set | Metrics | date
|
| 420 |
+
widths = ["10%", "5%", "5%", "5%"] + ["5%"] * (num_cols - fixed_cols) + ["10%"]
|
| 421 |
+
|
| 422 |
with gr.Tab(tab_name) as tab:
|
| 423 |
gr.Dataframe(
|
| 424 |
value=df,
|
| 425 |
datatype=datatype,
|
| 426 |
interactive=False,
|
| 427 |
+
show_search="filter",
|
| 428 |
+
column_widths=widths,
|
| 429 |
)
|
| 430 |
return tab
|
| 431 |
|
|
|
|
| 449 |
|
| 450 |
def create_evaluation_tabs(results_dfs: Dict[str, pd.DataFrame]) -> None:
|
| 451 |
"""
|
| 452 |
+
Create evaluation tabs for non-S2EF evaluations, including Overview tab.
|
| 453 |
"""
|
| 454 |
eval_datatype = ["markdown", "markdown", "number", "str"]
|
| 455 |
|
| 456 |
+
# Create Overview tab first
|
| 457 |
+
overview_df = create_overview_dataframe(results_dfs)
|
| 458 |
+
create_dataframe_tab("Overview", overview_df, eval_datatype, widths=["10%"])
|
| 459 |
+
|
| 460 |
+
# Create individual evaluation tabs
|
| 461 |
for eval_type in OTHER_EVAL_TYPES:
|
| 462 |
display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
|
| 463 |
create_dataframe_tab(display_name, results_dfs[eval_type], eval_datatype)
|
| 464 |
|
| 465 |
|
| 466 |
+
def create_overview_dataframe(results_dfs: Dict[str, pd.DataFrame]) -> pd.DataFrame:
|
| 467 |
+
"""
|
| 468 |
+
Create an overview dataframe combining all models with only the first metric from each eval type.
|
| 469 |
+
"""
|
| 470 |
+
# Initialize overview data with model info
|
| 471 |
+
overview_data = {}
|
| 472 |
+
|
| 473 |
+
# Get all unique model-dataset combinations across all dataframes
|
| 474 |
+
all_model_entries = set()
|
| 475 |
+
model_info = {} # Store model metadata (org, dataset, etc.)
|
| 476 |
+
|
| 477 |
+
# Collect all models and their info from all evaluation types
|
| 478 |
+
for eval_type, df in results_dfs.items():
|
| 479 |
+
if eval_type.startswith("Validation_") or eval_type.startswith("Test_"):
|
| 480 |
+
continue
|
| 481 |
+
|
| 482 |
+
for _, row in df.iterrows():
|
| 483 |
+
model_name = row["Model"]
|
| 484 |
+
dataset = row["Training Set"]
|
| 485 |
+
# Create unique identifier combining model name and training set
|
| 486 |
+
model_entry = (model_name, dataset)
|
| 487 |
+
all_model_entries.add(model_entry)
|
| 488 |
+
# Store model metadata for this specific entry
|
| 489 |
+
model_info[model_entry] = {
|
| 490 |
+
"Model": model_name,
|
| 491 |
+
"Organization": row.get("Organization", ""),
|
| 492 |
+
"Energy Conserving": row.get("Energy\nConserving", ""),
|
| 493 |
+
"Training Set": dataset,
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
# Initialize overview data structure
|
| 497 |
+
overview_data = {
|
| 498 |
+
"Model": [],
|
| 499 |
+
"Organization": [],
|
| 500 |
+
"Energy Conserving": [],
|
| 501 |
+
"Training Set": [],
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
# Add columns for the primary metric from each evaluation type
|
| 505 |
+
metric_columns = {}
|
| 506 |
+
|
| 507 |
+
# Add primary metric from each OTHER evaluation type (skip S2EF)
|
| 508 |
+
for eval_type in OTHER_EVAL_TYPES:
|
| 509 |
+
if eval_type in results_dfs and eval_type in LEADERBOARD_COLUMNS:
|
| 510 |
+
primary_metric = LEADERBOARD_COLUMNS[eval_type][0] # First metric
|
| 511 |
+
# Map to display name using COLUMN_MAPPING
|
| 512 |
+
metric_display_name = COLUMN_MAPPING.get(primary_metric, primary_metric)
|
| 513 |
+
# Include task name to avoid conflicts when multiple tasks have same metric
|
| 514 |
+
task_display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
|
| 515 |
+
full_display_name = f"{task_display_name}\n{metric_display_name}"
|
| 516 |
+
overview_data[full_display_name] = []
|
| 517 |
+
metric_columns[full_display_name] = (eval_type, metric_display_name)
|
| 518 |
+
|
| 519 |
+
# Populate data for each model entry
|
| 520 |
+
for model_entry in sorted(
|
| 521 |
+
all_model_entries, key=lambda x: (x[0], x[1])
|
| 522 |
+
): # Sort by model name, then dataset
|
| 523 |
+
model_name, dataset = model_entry
|
| 524 |
+
entry_info = model_info[model_entry]
|
| 525 |
+
|
| 526 |
+
overview_data["Model"].append(entry_info["Model"])
|
| 527 |
+
overview_data["Organization"].append(entry_info["Organization"])
|
| 528 |
+
overview_data["Energy Conserving"].append(entry_info["Energy Conserving"])
|
| 529 |
+
overview_data["Training Set"].append(entry_info["Training Set"])
|
| 530 |
+
|
| 531 |
+
# Fill in metrics for each column
|
| 532 |
+
for display_col, (eval_type, source_col) in metric_columns.items():
|
| 533 |
+
if eval_type in results_dfs:
|
| 534 |
+
df = results_dfs[eval_type]
|
| 535 |
+
# Match both model name and training set
|
| 536 |
+
model_row = df[
|
| 537 |
+
(df["Model"] == model_name) & (df["Training Set"] == dataset)
|
| 538 |
+
]
|
| 539 |
+
if not model_row.empty and source_col in model_row.columns:
|
| 540 |
+
value = model_row.iloc[0][source_col]
|
| 541 |
+
else:
|
| 542 |
+
value = "-"
|
| 543 |
+
else:
|
| 544 |
+
value = "-"
|
| 545 |
+
overview_data[display_col].append(value)
|
| 546 |
+
|
| 547 |
+
overview_df = pd.DataFrame(overview_data)
|
| 548 |
+
|
| 549 |
+
# Sort by the average of all metric columns (ascending for MAE metrics)
|
| 550 |
+
metric_cols = [
|
| 551 |
+
col
|
| 552 |
+
for col in overview_df.columns
|
| 553 |
+
if col not in PRE_COLUMN_NAMES + POST_COLUMN_NAMES
|
| 554 |
+
]
|
| 555 |
+
if metric_cols:
|
| 556 |
+
# Calculate average across all metric columns for each row
|
| 557 |
+
# Convert all metric columns to numeric, keeping "-" as NaN
|
| 558 |
+
numeric_metrics = overview_df[metric_cols].apply(pd.to_numeric, errors="coerce")
|
| 559 |
+
# Calculate mean across columns, ignoring NaN values
|
| 560 |
+
avg_scores = numeric_metrics.mean(axis=1)
|
| 561 |
+
# Sort by average score (ascending for MAE metrics)
|
| 562 |
+
overview_df = overview_df.loc[avg_scores.sort_values(na_position="last").index]
|
| 563 |
+
|
| 564 |
+
return overview_df
|
| 565 |
+
|
| 566 |
+
|
| 567 |
def create_submission_interface() -> Tuple[gr.components.Component, ...]:
|
| 568 |
"""
|
| 569 |
Create the submission interface components.
|
|
|
|
| 574 |
with gr.Row():
|
| 575 |
with gr.Column():
|
| 576 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 577 |
+
energy_conserving = gr.Checkbox(
|
| 578 |
+
label="Is the model energy conserving? (i.e. F= -dE/dx)"
|
| 579 |
+
)
|
| 580 |
+
model_url = gr.Textbox(label="Model/Checkpoint URL")
|
| 581 |
+
paper_url = gr.Textbox(label="Paper URL")
|
| 582 |
dataset = gr.Dropdown(
|
| 583 |
choices=["OMol-All", "OMol-4M", "UMA-459M", "Other"],
|
| 584 |
label="Training set",
|
|
|
|
| 612 |
organization,
|
| 613 |
model_name_textbox,
|
| 614 |
model_url,
|
| 615 |
+
paper_url,
|
| 616 |
+
energy_conserving,
|
| 617 |
mail,
|
| 618 |
dataset,
|
| 619 |
additional_info,
|
|
|
|
| 659 |
organization,
|
| 660 |
model_name_textbox,
|
| 661 |
model_url,
|
| 662 |
+
paper_url,
|
| 663 |
+
energy_conserving,
|
| 664 |
mail,
|
| 665 |
dataset,
|
| 666 |
additional_info,
|
|
|
|
| 669 |
|
| 670 |
submit_button.click(
|
| 671 |
lambda x: "Coming soon :)",
|
| 672 |
+
[0],
|
| 673 |
submission_result,
|
| 674 |
# add_new_eval,
|
| 675 |
# [
|
|
|
|
| 683 |
# additional_info,
|
| 684 |
# ],
|
| 685 |
# submission_result,
|
|
|
|
| 686 |
)
|
| 687 |
|
| 688 |
return demo
|
content.py
CHANGED
|
@@ -60,13 +60,15 @@ CITATION_BUTTON_TEXT = r"""
|
|
| 60 |
"""
|
| 61 |
|
| 62 |
# Table configuration
|
| 63 |
-
PRE_COLUMN_NAMES = ["Model", "Organization", "Training Set"]
|
| 64 |
POST_COLUMN_NAMES = ["Submission date"]
|
| 65 |
-
TYPES = ["markdown", "
|
| 66 |
|
| 67 |
|
| 68 |
-
def model_hyperlink(
|
| 69 |
"""Create a hyperlink for model names in the leaderboard."""
|
| 70 |
-
if not
|
| 71 |
return model_name
|
| 72 |
-
|
|
|
|
|
|
|
|
|
| 60 |
"""
|
| 61 |
|
| 62 |
# Table configuration
|
| 63 |
+
PRE_COLUMN_NAMES = ["Model", "Organization", "Energy Conserving", "Training Set"]
|
| 64 |
POST_COLUMN_NAMES = ["Submission date"]
|
| 65 |
+
TYPES = ["markdown", "str", "bool", "str"]
|
| 66 |
|
| 67 |
|
| 68 |
+
def model_hyperlink(model_link: str, paper_link: str, model_name: str) -> str:
|
| 69 |
"""Create a hyperlink for model names in the leaderboard."""
|
| 70 |
+
if not model_link or model_link.strip() == "":
|
| 71 |
return model_name
|
| 72 |
+
if not paper_link or paper_link.strip() == "" or paper_link == "-":
|
| 73 |
+
return f'<a target="_blank" href="{model_link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;" title="Download model">{model_name}</a>'
|
| 74 |
+
return f'<a target="_blank" href="{model_link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;" title="Download model">{model_name}</a> <a target="_blank" href="{paper_link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;" title="Read paper">📕</a>'
|