Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
speed up s2ef
Browse files- app.py +1 -1
- content.py +1 -2
- evaluator.py +77 -95
app.py
CHANGED
|
@@ -324,7 +324,7 @@ def add_new_eval(
|
|
| 324 |
return
|
| 325 |
|
| 326 |
# Evaluate the submission
|
| 327 |
-
yield "⚙️ Evaluating your submission..."
|
| 328 |
metrics = evaluate(
|
| 329 |
leaderboard_data.target_paths[eval_type],
|
| 330 |
path_to_file,
|
|
|
|
| 324 |
return
|
| 325 |
|
| 326 |
# Evaluate the submission
|
| 327 |
+
yield "⚙️ Evaluating your submission...(do not close/refresh this page!)"
|
| 328 |
metrics = evaluate(
|
| 329 |
leaderboard_data.target_paths[eval_type],
|
| 330 |
path_to_file,
|
content.py
CHANGED
|
@@ -39,8 +39,7 @@ Users are limited to 5 successful submissions per month for each evaluation type
|
|
| 39 |
- Ensure your prediction file format matches the expected format for the selected evaluation
|
| 40 |
- Your email will be stored privately and only used for communication regarding your submission
|
| 41 |
- Results will appear on the leaderboard after successful validation
|
| 42 |
-
- Remain on the page until you see the "Success" message.
|
| 43 |
-
- S2EF evaluations can take 10-20 minutes, the other evaluations happen in a few minutes. Please be patient.
|
| 44 |
- If you wish to have your model removed from the leaderboard please reach out to mshuaibi@meta.com with the model name and submission date.
|
| 45 |
|
| 46 |
This leaderboard is actively being developed and we are always open to feedback. If you run into any issues or have a question please
|
|
|
|
| 39 |
- Ensure your prediction file format matches the expected format for the selected evaluation
|
| 40 |
- Your email will be stored privately and only used for communication regarding your submission
|
| 41 |
- Results will appear on the leaderboard after successful validation
|
| 42 |
+
- Remain on the page until you see the "Success" message. Evaluations can take several minutes, please be patient.
|
|
|
|
| 43 |
- If you wish to have your model removed from the leaderboard please reach out to mshuaibi@meta.com with the model name and submission date.
|
| 44 |
|
| 45 |
This leaderboard is actively being developed and we are always open to feedback. If you run into any issues or have a question please
|
evaluator.py
CHANGED
|
@@ -35,79 +35,6 @@ OMOL_DATA_ID_MAPPING = {
|
|
| 35 |
}
|
| 36 |
|
| 37 |
|
| 38 |
-
def npz_2_s2ef_input(npz_input_file: Path, subset: str) -> Dict[str, torch.tensor]:
|
| 39 |
-
with np.load(npz_input_file, allow_pickle=True) as data:
|
| 40 |
-
forces = data["forces"]
|
| 41 |
-
energy = data["energy"]
|
| 42 |
-
data_ids = np.array(data["data_ids"])
|
| 43 |
-
|
| 44 |
-
out_energy = []
|
| 45 |
-
out_forces = []
|
| 46 |
-
out_atoms = []
|
| 47 |
-
|
| 48 |
-
order = range(len(forces))
|
| 49 |
-
for x in order:
|
| 50 |
-
data_id = data_ids[x]
|
| 51 |
-
if subset == "all" or data_id in OMOL_DATA_ID_MAPPING.get(subset, []):
|
| 52 |
-
out_energy.append(energy[x])
|
| 53 |
-
force_array = forces[x]
|
| 54 |
-
out_forces.append(torch.tensor(force_array, dtype=torch.float32))
|
| 55 |
-
out_atoms.append(len(force_array))
|
| 56 |
-
|
| 57 |
-
energy = torch.tensor(out_energy)
|
| 58 |
-
out_forces = torch.cat(out_forces, dim=0)
|
| 59 |
-
out_dict = {
|
| 60 |
-
"energy": energy.float(),
|
| 61 |
-
"forces": out_forces,
|
| 62 |
-
"natoms": torch.tensor(out_atoms),
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
return out_dict
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def npz_2_s2ef_submission(
|
| 69 |
-
npz_input_file: Path, order: List[int], subset: str = "All"
|
| 70 |
-
) -> Dict[str, torch.tensor]:
|
| 71 |
-
with np.load(npz_input_file) as data:
|
| 72 |
-
forces = data["forces"]
|
| 73 |
-
energy = data["energy"]
|
| 74 |
-
natoms = data["natoms"]
|
| 75 |
-
data_ids = data["data_ids"]
|
| 76 |
-
forces = np.split(forces, np.cumsum(natoms)[:-1])
|
| 77 |
-
|
| 78 |
-
# check for infs
|
| 79 |
-
if len(set(np.where(np.isinf(energy))[0])) != 0:
|
| 80 |
-
inf_energy_ids = list(set(np.where(np.isinf(energy))[0]))
|
| 81 |
-
raise Exception(
|
| 82 |
-
f"Inf values found in `energy` for IDs: ({inf_energy_ids[:3]}, ...)"
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
out_energy = []
|
| 86 |
-
out_forces = []
|
| 87 |
-
out_atoms = []
|
| 88 |
-
|
| 89 |
-
if order is None:
|
| 90 |
-
order = range(len(forces))
|
| 91 |
-
|
| 92 |
-
for x in order:
|
| 93 |
-
data_id = data_ids[x]
|
| 94 |
-
if subset == "all" or data_id in OMOL_DATA_ID_MAPPING.get(subset, []):
|
| 95 |
-
out_energy.append(energy[x])
|
| 96 |
-
force_array = forces[x]
|
| 97 |
-
out_forces.append(torch.tensor(force_array, dtype=torch.float32))
|
| 98 |
-
out_atoms.append(force_array.shape[0])
|
| 99 |
-
|
| 100 |
-
energy = torch.tensor(out_energy)
|
| 101 |
-
out_forces = torch.cat(out_forces, dim=0)
|
| 102 |
-
out_dict = {
|
| 103 |
-
"energy": energy.float().squeeze(),
|
| 104 |
-
"forces": out_forces,
|
| 105 |
-
"natoms": torch.tensor(out_atoms),
|
| 106 |
-
}
|
| 107 |
-
|
| 108 |
-
return out_dict
|
| 109 |
-
|
| 110 |
-
|
| 111 |
def reorder(ref: np.ndarray, to_reorder: np.ndarray) -> np.ndarray:
|
| 112 |
"""
|
| 113 |
Get the ordering so that `to_reorder[ordering]` == ref.
|
|
@@ -146,9 +73,13 @@ def get_order(path_submission: Path, path_annotations: Path):
|
|
| 146 |
with np.load(path_annotations, allow_pickle=True) as data:
|
| 147 |
annotations_ids = data["ids"]
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
details = (
|
| 154 |
f"{len(missing_ids)} missing IDs: ({list(missing_ids)[:3]}, ...)\n"
|
|
@@ -159,39 +90,79 @@ def get_order(path_submission: Path, path_annotations: Path):
|
|
| 159 |
return reorder(annotations_ids, submission_ids)
|
| 160 |
|
| 161 |
|
| 162 |
-
def extract_and_align(
|
| 163 |
-
path_submission: Path,
|
| 164 |
-
path_annotations: Path,
|
| 165 |
-
subset: str,
|
| 166 |
-
) -> Tuple[Dict[str, torch.tensor], Dict[str, torch.tensor]]:
|
| 167 |
-
|
| 168 |
-
order = get_order(path_submission, path_annotations)
|
| 169 |
-
|
| 170 |
-
submission_data = npz_2_s2ef_submission(path_submission, order, subset)
|
| 171 |
-
annotations_data = npz_2_s2ef_input(path_annotations, subset)
|
| 172 |
-
|
| 173 |
-
return submission_data, annotations_data
|
| 174 |
-
|
| 175 |
-
|
| 176 |
def s2ef_metrics(
|
| 177 |
annotations_path: Path,
|
| 178 |
submission_filename: Path,
|
| 179 |
subsets: list = ["all"],
|
| 180 |
) -> Dict[str, float]:
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
metrics = {}
|
| 184 |
for subset in subsets:
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
subset,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
subset_metrics = evaluator.eval(
|
| 191 |
submission_data, annotations_data, prev_metrics={}
|
| 192 |
)
|
| 193 |
for key in ["energy_mae", "forces_mae"]:
|
| 194 |
metrics[f"{subset}_{key}"] = subset_metrics[key]["metric"]
|
|
|
|
| 195 |
return metrics
|
| 196 |
|
| 197 |
|
|
@@ -204,6 +175,17 @@ def omol_evaluations(
|
|
| 204 |
submission_data = json.load(f)
|
| 205 |
with open(annotations_path) as f:
|
| 206 |
annotations_data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
eval_fn = OMOL_EVAL_FUNCTIONS.get(eval_type)
|
| 208 |
metrics = eval_fn(annotations_data, submission_data)
|
| 209 |
return metrics
|
|
|
|
| 35 |
}
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def reorder(ref: np.ndarray, to_reorder: np.ndarray) -> np.ndarray:
|
| 39 |
"""
|
| 40 |
Get the ordering so that `to_reorder[ordering]` == ref.
|
|
|
|
| 73 |
with np.load(path_annotations, allow_pickle=True) as data:
|
| 74 |
annotations_ids = data["ids"]
|
| 75 |
|
| 76 |
+
# Use sets for faster comparison
|
| 77 |
+
submission_set = set(submission_ids)
|
| 78 |
+
annotations_set = set(annotations_ids)
|
| 79 |
+
|
| 80 |
+
if submission_set != annotations_set:
|
| 81 |
+
missing_ids = annotations_set - submission_set
|
| 82 |
+
unexpected_ids = submission_set - annotations_set
|
| 83 |
|
| 84 |
details = (
|
| 85 |
f"{len(missing_ids)} missing IDs: ({list(missing_ids)[:3]}, ...)\n"
|
|
|
|
| 90 |
return reorder(annotations_ids, submission_ids)
|
| 91 |
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def s2ef_metrics(
|
| 94 |
annotations_path: Path,
|
| 95 |
submission_filename: Path,
|
| 96 |
subsets: list = ["all"],
|
| 97 |
) -> Dict[str, float]:
|
| 98 |
+
eval_metrics = {
|
| 99 |
+
"energy": ["mae"],
|
| 100 |
+
"forces": ["mae"],
|
| 101 |
+
}
|
| 102 |
+
evaluator = Evaluator(eval_metrics=eval_metrics)
|
| 103 |
+
|
| 104 |
+
# Get order once for all subsets
|
| 105 |
+
order = get_order(submission_filename, annotations_path)
|
| 106 |
+
|
| 107 |
+
with np.load(submission_filename) as data:
|
| 108 |
+
forces = data["forces"]
|
| 109 |
+
energy = data["energy"][order]
|
| 110 |
+
natoms = data["natoms"]
|
| 111 |
+
forces = np.array(np.split(forces, np.cumsum(natoms)[:-1]), dtype=object)[order]
|
| 112 |
+
natoms = natoms[order]
|
| 113 |
+
|
| 114 |
+
if len(set(np.where(np.isinf(energy))[0])) != 0:
|
| 115 |
+
inf_energy_ids = list(set(np.where(np.isinf(energy))[0]))
|
| 116 |
+
raise Exception(
|
| 117 |
+
f"Inf values found in `energy` for IDs: ({inf_energy_ids[:3]}, ...)"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
with np.load(annotations_path, allow_pickle=True) as data:
|
| 121 |
+
target_forces = data["forces"]
|
| 122 |
+
target_energy = data["energy"]
|
| 123 |
+
target_data_ids = data["data_ids"]
|
| 124 |
|
| 125 |
metrics = {}
|
| 126 |
for subset in subsets:
|
| 127 |
+
if subset == "all":
|
| 128 |
+
subset_mask = np.ones(len(target_data_ids), dtype=bool)
|
| 129 |
+
else:
|
| 130 |
+
allowed_ids = set(OMOL_DATA_ID_MAPPING.get(subset, []))
|
| 131 |
+
subset_mask = np.array(
|
| 132 |
+
[data_id in allowed_ids for data_id in target_data_ids]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
sub_energy = torch.from_numpy(energy[subset_mask])
|
| 136 |
+
sub_forces = torch.from_numpy(np.concatenate(forces[subset_mask]))
|
| 137 |
+
sub_natoms = torch.from_numpy(natoms[subset_mask])
|
| 138 |
+
|
| 139 |
+
submission_data = {
|
| 140 |
+
"energy": sub_energy,
|
| 141 |
+
"forces": sub_forces,
|
| 142 |
+
"natoms": sub_natoms,
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
target_energy_tensor = torch.from_numpy(target_energy[subset_mask])
|
| 146 |
+
target_force_tensors = torch.from_numpy(
|
| 147 |
+
np.concatenate(target_forces[subset_mask])
|
| 148 |
+
)
|
| 149 |
+
target_natoms_tensor = torch.tensor(
|
| 150 |
+
[force_array.shape[0] for force_array in target_forces[subset_mask]],
|
| 151 |
+
dtype=torch.long,
|
| 152 |
)
|
| 153 |
+
|
| 154 |
+
annotations_data = {
|
| 155 |
+
"energy": target_energy_tensor,
|
| 156 |
+
"forces": target_force_tensors,
|
| 157 |
+
"natoms": target_natoms_tensor,
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
subset_metrics = evaluator.eval(
|
| 161 |
submission_data, annotations_data, prev_metrics={}
|
| 162 |
)
|
| 163 |
for key in ["energy_mae", "forces_mae"]:
|
| 164 |
metrics[f"{subset}_{key}"] = subset_metrics[key]["metric"]
|
| 165 |
+
|
| 166 |
return metrics
|
| 167 |
|
| 168 |
|
|
|
|
| 175 |
submission_data = json.load(f)
|
| 176 |
with open(annotations_path) as f:
|
| 177 |
annotations_data = json.load(f)
|
| 178 |
+
|
| 179 |
+
submission_entries = set(submission_data.keys())
|
| 180 |
+
annotation_entries = set(annotations_data.keys())
|
| 181 |
+
if submission_entries != annotation_entries:
|
| 182 |
+
missing = annotation_entries - submission_entries
|
| 183 |
+
unexpected = submission_entries - annotation_entries
|
| 184 |
+
raise ValueError(
|
| 185 |
+
f"Submission and annotations entries do not match.\n"
|
| 186 |
+
f"Missing entries in submission: {missing}\n"
|
| 187 |
+
f"Unexpected entries in submission: {unexpected}"
|
| 188 |
+
)
|
| 189 |
eval_fn = OMOL_EVAL_FUNCTIONS.get(eval_type)
|
| 190 |
metrics = eval_fn(annotations_data, submission_data)
|
| 191 |
return metrics
|