from app import add_new_eval, LeaderboardData from pathlib import Path import gradio as gr import os # Create a mock profile for testing class MockProfile: def __init__(self, username): self.username = username mock_profile = MockProfile("mshuaibi_test") evals = { # "IE_EA": "unoptimized_ie_ea_results.json", # "Ligand pocket": "pdb_pocket_results.json", "Ligand strain": "ligand_strain_results.json", # "Conformers": "geom_conformers_results.json", # "Protonation": "protonation_energies_results.json", # "Distance scaling": "distance_scaling_results.json", # "Spin gap": "unoptimized_spin_gap_results.json", # "Validation": "val_predictions.npz", # "Test": "test_predictions.npz" } models = { # "esen-s-c-4M": { # "name": "eSEN-sm-cons.", # "dataset_size": "OMol-4M", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_4M", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "esen-s-c-All": { # "name": "eSEN-sm-cons.", # "dataset_size": "OMol-All", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_all", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "esen-m-d-4M": { # "name": "eSEN-md-d.", # "dataset_size": "OMol-4M", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_4M_finetune", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "esen-m-d-All": { # "name": "eSEN-md-d.", # "dataset_size": "OMol-All", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_all_finetune", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "goc-4M": { # "name": "GemNet-OC", # "dataset_size": "OMol-4M", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_gemnet_oc_4M", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "goc-All": { # "name": "GemNet-OC", # "dataset_size": "OMol-All", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/050325_gemnet_oc_all", # "paper_link": "https://arxiv.org/pdf/2505.08762", # }, # "uma-s-1p1": { # "name": "UMA-S-1p1", # "dataset_size": "UMA-459M", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_sm_1p1", # "paper_link": "https://arxiv.org/pdf/2506.23971", # }, # "uma-m-1p1": { # "name": "UMA-M-1p1", # "dataset_size": "UMA-459M", # "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_md_1p1", # "paper_link": "https://arxiv.org/pdf/2506.23971", # }, "mace": { "name": "mace-omol-L-0", "dataset_size": "OMol-All", "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/mace", "paper_link": "https://github.com/ACEsuit/mace/releases/tag/v0.3.14", "org": "MACE-Cambridge" }, } for model, model_info in models.items(): model_name = model_info["name"] dataset_size = model_info["dataset_size"] results_dir = model_info["results_dir"] paper_link = model_info["paper_link"] org = model_info.get("org", "Meta") for _eval, eval_path in evals.items(): generator = add_new_eval( path_to_file=os.path.join(results_dir, eval_path), eval_type=_eval, organization=org, model=model_name, url=paper_link, mail="mshuaibi@meta.com", training_set=dataset_size, additional_info="", profile=mock_profile, ) for i in generator: print(i)