Spaces:
Running
on
Zero
Running
on
Zero
File size: 53,414 Bytes
9507532 eb74057 c226bc0 9507532 eb74057 9507532 eb74057 c226bc0 9507532 9a006f8 eb74057 9507532 eb74057 9507532 a288991 9507532 9f367f7 9507532 f7d060f 9507532 eb74057 f7d060f 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 37de32d 9507532 37de32d eb74057 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9f367f7 9507532 c226bc0 9507532 9f367f7 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 9f367f7 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 c226bc0 9507532 9f367f7 9507532 c226bc0 9507532 9f367f7 9507532 37de32d eb74057 37de32d 9507532 a288991 9507532 a288991 9507532 a288991 37de32d a288991 37de32d 9507532 c226bc0 9507532 37de32d 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 c226bc0 9f367f7 c226bc0 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# conda activate hf3.10
import gc
import os
import shutil
import sys
import time
from datetime import datetime
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
sys.path.append("mapanything/")
from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
from mapanything.utils.hf_utils.css_and_html import (
GRADIO_CSS,
MEASURE_INSTRUCTIONS_HTML,
get_acknowledgements_html,
get_description_html,
get_gradio_theme,
get_header_html,
)
from mapanything.utils.hf_utils.hf_helpers import initialize_mapanything_model
from mapanything.utils.hf_utils.visual_util import predictions_to_glb
from mapanything.utils.image import load_images, rgb
def get_logo_base64():
"""Convert WAI logo to base64 for embedding in HTML"""
import base64
logo_path = "examples/wai_logo/wai_logo.png"
try:
with open(logo_path, "rb") as img_file:
img_data = img_file.read()
base64_str = base64.b64encode(img_data).decode()
return f"data:image/png;base64,{base64_str}"
except FileNotFoundError:
return None
# MapAnything Configuration
high_level_config = {
"path": "configs/train.yaml",
"hf_model_name": "facebook/map-anything",
"model_str": "mapanything",
"config_overrides": [
"machine=aws",
"model=mapanything",
"model/task=images_only",
"model.encoder.uses_torch_hub=false",
],
"checkpoint_name": "model.safetensors",
"config_name": "config.json",
"trained_with_amp": True,
"trained_with_amp_dtype": "bf16",
"data_norm_type": "dinov2",
"patch_size": 14,
"resolution": 518,
}
# Initialize model - this will be done on GPU when needed
model = None
# -------------------------------------------------------------------------
# 1) Core model inference
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_model(
target_dir,
apply_mask=True,
mask_edges=True,
filter_black_bg=False,
filter_white_bg=False,
):
"""
Run the MapAnything model on images in the 'target_dir/images' folder and return predictions.
"""
global model
import torch # Ensure torch is available in function scope
print(f"Processing images from {target_dir}")
# Device check
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Initialize model if not already done
if model is None:
model = initialize_mapanything_model(high_level_config, device)
else:
model = model.to(device)
model.eval()
# Load images using MapAnything's load_images function
print("Loading images...")
image_folder_path = os.path.join(target_dir, "images")
views = load_images(image_folder_path)
print(f"Loaded {len(views)} images")
if len(views) == 0:
raise ValueError("No images found. Check your upload.")
# Run model inference
print("Running inference...")
# apply_mask: Whether to apply the non-ambiguous mask to the output. Defaults to True.
# mask_edges: Whether to compute an edge mask based on normals and depth and apply it to the output. Defaults to True.
# Use checkbox values
outputs = model.infer(views, apply_mask=apply_mask, mask_edges=mask_edges)
# Convert predictions to format expected by visualization
predictions = {}
# Initialize lists for the required keys
extrinsic_list = []
intrinsic_list = []
world_points_list = []
depth_maps_list = []
images_list = []
final_mask_list = []
# Loop through the outputs
for pred in outputs:
# Extract data from predictions
depthmap_torch = pred["depth_z"][0].squeeze(-1) # (H, W)
intrinsics_torch = pred["intrinsics"][0] # (3, 3)
camera_pose_torch = pred["camera_poses"][0] # (4, 4)
# Compute new pts3d using depth, intrinsics, and camera pose
pts3d_computed, valid_mask = depthmap_to_world_frame(
depthmap_torch, intrinsics_torch, camera_pose_torch
)
# Convert to numpy arrays for visualization
# Check if mask key exists in pred, if not, fill with boolean trues in the size of depthmap_torch
if "mask" in pred:
mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
else:
# Fill with boolean trues in the size of depthmap_torch
mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)
# Combine with valid depth mask
mask = mask & valid_mask.cpu().numpy()
image = pred["img_no_norm"][0].cpu().numpy()
# Append to lists
extrinsic_list.append(camera_pose_torch.cpu().numpy())
intrinsic_list.append(intrinsics_torch.cpu().numpy())
world_points_list.append(pts3d_computed.cpu().numpy())
depth_maps_list.append(depthmap_torch.cpu().numpy())
images_list.append(image) # Add image to list
final_mask_list.append(mask) # Add final_mask to list
# Convert lists to numpy arrays with required shapes
# extrinsic: (S, 3, 4) - batch of camera extrinsic matrices
predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)
# intrinsic: (S, 3, 3) - batch of camera intrinsic matrices
predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)
# world_points: (S, H, W, 3) - batch of 3D world points
predictions["world_points"] = np.stack(world_points_list, axis=0)
# depth: (S, H, W, 1) or (S, H, W) - batch of depth maps
depth_maps = np.stack(depth_maps_list, axis=0)
# Add channel dimension if needed to match (S, H, W, 1) format
if len(depth_maps.shape) == 3:
depth_maps = depth_maps[..., np.newaxis]
predictions["depth"] = depth_maps
# images: (S, H, W, 3) - batch of input images
predictions["images"] = np.stack(images_list, axis=0)
# final_mask: (S, H, W) - batch of final masks for filtering
predictions["final_mask"] = np.stack(final_mask_list, axis=0)
# Process data for visualization tabs (depth, normal, measure)
processed_data = process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg, filter_white_bg
)
# Clean up
torch.cuda.empty_cache()
return predictions, processed_data
def update_view_selectors(processed_data):
"""Update view selector dropdowns based on available views"""
if processed_data is None or len(processed_data) == 0:
choices = ["View 1"]
else:
num_views = len(processed_data)
choices = [f"View {i + 1}" for i in range(num_views)]
return (
gr.Dropdown(choices=choices, value=choices[0]), # depth_view_selector
gr.Dropdown(choices=choices, value=choices[0]), # normal_view_selector
gr.Dropdown(choices=choices, value=choices[0]), # measure_view_selector
)
def get_view_data_by_index(processed_data, view_index):
"""Get view data by index, handling bounds"""
if processed_data is None or len(processed_data) == 0:
return None
view_keys = list(processed_data.keys())
if view_index < 0 or view_index >= len(view_keys):
view_index = 0
return processed_data[view_keys[view_index]]
def update_depth_view(processed_data, view_index):
"""Update depth view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["depth"] is None:
return None
return colorize_depth(view_data["depth"], mask=view_data.get("mask"))
def update_normal_view(processed_data, view_index):
"""Update normal view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["normal"] is None:
return None
return colorize_normal(view_data["normal"], mask=view_data.get("mask"))
def update_measure_view(processed_data, view_index):
"""Update measure view for a specific view index with mask overlay"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None:
return None, [] # image, measure_points
# Get the base image
image = view_data["image"].copy()
# Ensure image is in uint8 format
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
# Apply mask overlay if mask is available
if view_data["mask"] is not None:
mask = view_data["mask"]
# Create light grey overlay for masked areas
# Masked areas (False values) will be overlaid with light grey
invalid_mask = ~mask # Areas where mask is False
if invalid_mask.any():
# Create a light grey overlay (RGB: 192, 192, 192)
overlay_color = np.array([255, 220, 220], dtype=np.uint8)
# Apply overlay with some transparency
alpha = 0.5 # Transparency level
for c in range(3): # RGB channels
image[:, :, c] = np.where(
invalid_mask,
(1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
image[:, :, c],
).astype(np.uint8)
return image, []
def navigate_depth_view(processed_data, current_selector_value, direction):
"""Navigate depth view (direction: -1 for previous, +1 for next)"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None
# Parse current view number
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
depth_vis = update_depth_view(processed_data, new_view)
return new_selector_value, depth_vis
def navigate_normal_view(processed_data, current_selector_value, direction):
"""Navigate normal view (direction: -1 for previous, +1 for next)"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None
# Parse current view number
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
normal_vis = update_normal_view(processed_data, new_view)
return new_selector_value, normal_vis
def navigate_measure_view(processed_data, current_selector_value, direction):
"""Navigate measure view (direction: -1 for previous, +1 for next)"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None, []
# Parse current view number
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
measure_image, measure_points = update_measure_view(processed_data, new_view)
return new_selector_value, measure_image, measure_points
def populate_visualization_tabs(processed_data):
"""Populate the depth, normal, and measure tabs with processed data"""
if processed_data is None or len(processed_data) == 0:
return None, None, None, []
# Use update functions to ensure confidence filtering is applied from the start
depth_vis = update_depth_view(processed_data, 0)
normal_vis = update_normal_view(processed_data, 0)
measure_img, _ = update_measure_view(processed_data, 0)
return depth_vis, normal_vis, measure_img, []
# -------------------------------------------------------------------------
# 2) Handle uploaded video/images --> produce target_dir + images
# -------------------------------------------------------------------------
def handle_uploads(input_video, input_images, s_time_interval=1.0):
"""
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
images or extracted frames from video into it. Return (target_dir, image_paths).
"""
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Create a unique folder name
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
target_dir = f"input_images_{timestamp}"
target_dir_images = os.path.join(target_dir, "images")
# Clean up if somehow that folder already exists
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
os.makedirs(target_dir_images)
image_paths = []
# --- Handle images ---
if input_images is not None:
for file_data in input_images:
if isinstance(file_data, dict) and "name" in file_data:
file_path = file_data["name"]
else:
file_path = file_data
dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
shutil.copy(file_path, dst_path)
image_paths.append(dst_path)
# --- Handle video ---
if input_video is not None:
if isinstance(input_video, dict) and "name" in input_video:
video_path = input_video["name"]
else:
video_path = input_video
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * s_time_interval) # 1 frame/sec
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
if count % frame_interval == 0:
image_path = os.path.join(
target_dir_images, f"{video_frame_num:06}.png"
)
cv2.imwrite(image_path, frame)
image_paths.append(image_path)
video_frame_num += 1
# Sort final images for gallery
image_paths = sorted(image_paths)
end_time = time.time()
print(
f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
)
return target_dir, image_paths
# -------------------------------------------------------------------------
# 3) Update gallery on upload
# -------------------------------------------------------------------------
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
"""
Whenever user uploads or changes files, immediately handle them
and show in the gallery. Return (target_dir, image_paths).
If nothing is uploaded, returns "None" and empty list.
"""
if not input_video and not input_images:
return None, None, None, None
target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
return (
None,
target_dir,
image_paths,
"Upload complete. Click 'Reconstruct' to begin 3D processing.",
)
# -------------------------------------------------------------------------
# 4) Reconstruction: uses the target_dir plus any viz parameters
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def gradio_demo(
target_dir,
frame_filter="All",
show_cam=True,
filter_black_bg=False,
filter_white_bg=False,
apply_mask=True,
mask_edges=True,
show_mesh=True,
):
"""
Perform reconstruction using the already-created target_dir/images.
"""
if not os.path.isdir(target_dir) or target_dir == "None":
return None, "No valid target directory found. Please upload first.", None, None
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Prepare frame_filter dropdown
target_dir_images = os.path.join(target_dir, "images")
all_files = (
sorted(os.listdir(target_dir_images))
if os.path.isdir(target_dir_images)
else []
)
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
frame_filter_choices = ["All"] + all_files
print("Running MapAnything model...")
with torch.no_grad():
predictions, processed_data = run_model(target_dir, apply_mask, mask_edges)
# Save predictions
prediction_save_path = os.path.join(target_dir, "predictions.npz")
np.savez(prediction_save_path, **predictions)
# Handle None frame_filter
if frame_filter is None:
frame_filter = "All"
# Build a GLB file name
glbfile = os.path.join(
target_dir,
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
)
# Convert predictions to GLB
glbscene = predictions_to_glb(
predictions,
filter_by_frames=frame_filter,
show_cam=show_cam,
mask_black_bg=filter_black_bg,
mask_white_bg=filter_white_bg,
as_mesh=show_mesh, # Use the show_mesh parameter
)
glbscene.export(file_obj=glbfile)
# Cleanup
del predictions
gc.collect()
torch.cuda.empty_cache()
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds")
log_msg = (
f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
)
# Populate visualization tabs with processed data
depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(
processed_data
)
# Update view selectors based on available views
depth_selector, normal_selector, measure_selector = update_view_selectors(
processed_data
)
return (
glbfile,
log_msg,
gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
processed_data,
depth_vis,
normal_vis,
measure_img,
"", # measure_text (empty initially)
depth_selector,
normal_selector,
measure_selector,
)
# -------------------------------------------------------------------------
# 5) Helper functions for UI resets + re-visualization
# -------------------------------------------------------------------------
def colorize_depth(depth_map, mask=None):
"""Convert depth map to colorized visualization with optional mask"""
if depth_map is None:
return None
# Normalize depth to 0-1 range
depth_normalized = depth_map.copy()
valid_mask = depth_normalized > 0
# Apply additional mask if provided (for background filtering)
if mask is not None:
valid_mask = valid_mask & mask
if valid_mask.sum() > 0:
valid_depths = depth_normalized[valid_mask]
p5 = np.percentile(valid_depths, 5)
p95 = np.percentile(valid_depths, 95)
depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)
# Apply colormap
import matplotlib.pyplot as plt
colormap = plt.cm.turbo_r
colored = colormap(depth_normalized)
colored = (colored[:, :, :3] * 255).astype(np.uint8)
# Set invalid pixels to white
colored[~valid_mask] = [255, 255, 255]
return colored
def colorize_normal(normal_map, mask=None):
"""Convert normal map to colorized visualization with optional mask"""
if normal_map is None:
return None
# Create a copy for modification
normal_vis = normal_map.copy()
# Apply mask if provided (set masked areas to [0, 0, 0] which becomes grey after normalization)
if mask is not None:
invalid_mask = ~mask
normal_vis[invalid_mask] = [0, 0, 0] # Set invalid areas to zero
# Normalize normals to [0, 1] range for visualization
normal_vis = (normal_vis + 1.0) / 2.0
normal_vis = (normal_vis * 255).astype(np.uint8)
return normal_vis
def process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg=False, filter_white_bg=False
):
"""Extract depth, normal, and 3D points from predictions for visualization"""
processed_data = {}
# Process each view
for view_idx, view in enumerate(views):
# Get image
image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])
# Get predicted points
pred_pts3d = predictions["world_points"][view_idx]
# Initialize data for this view
view_data = {
"image": image[0],
"points3d": pred_pts3d,
"depth": None,
"normal": None,
"mask": None,
}
# Start with the final mask from predictions
mask = predictions["final_mask"][view_idx].copy()
# Apply black background filtering if enabled
if filter_black_bg:
# Get the image colors (ensure they're in 0-255 range)
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
# Filter out black background pixels (sum of RGB < 16)
black_bg_mask = view_colors.sum(axis=2) >= 16
mask = mask & black_bg_mask
# Apply white background filtering if enabled
if filter_white_bg:
# Get the image colors (ensure they're in 0-255 range)
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
# Filter out white background pixels (all RGB > 240)
white_bg_mask = ~(
(view_colors[:, :, 0] > 240)
& (view_colors[:, :, 1] > 240)
& (view_colors[:, :, 2] > 240)
)
mask = mask & white_bg_mask
view_data["mask"] = mask
view_data["depth"] = predictions["depth"][view_idx].squeeze()
normals, _ = points_to_normals(pred_pts3d, mask=view_data["mask"])
view_data["normal"] = normals
processed_data[view_idx] = view_data
return processed_data
def reset_measure(processed_data):
"""Reset measure points"""
if processed_data is None or len(processed_data) == 0:
return None, [], ""
# Return the first view image
first_view = list(processed_data.values())[0]
return first_view["image"], [], ""
def measure(
processed_data, measure_points, current_view_selector, event: gr.SelectData
):
"""Handle measurement on images"""
try:
print(f"Measure function called with selector: {current_view_selector}")
if processed_data is None or len(processed_data) == 0:
return None, [], "No data available"
# Use the currently selected view instead of always using the first view
try:
current_view_index = int(current_view_selector.split()[1]) - 1
except:
current_view_index = 0
print(f"Using view index: {current_view_index}")
# Get view data safely
if current_view_index < 0 or current_view_index >= len(processed_data):
current_view_index = 0
view_keys = list(processed_data.keys())
current_view = processed_data[view_keys[current_view_index]]
if current_view is None:
return None, [], "No view data available"
point2d = event.index[0], event.index[1]
print(f"Clicked point: {point2d}")
# Check if the clicked point is in a masked area (prevent interaction)
if (
current_view["mask"] is not None
and 0 <= point2d[1] < current_view["mask"].shape[0]
and 0 <= point2d[0] < current_view["mask"].shape[1]
):
# Check if the point is in a masked (invalid) area
if not current_view["mask"][point2d[1], point2d[0]]:
print(f"Clicked point {point2d} is in masked area, ignoring click")
# Always return image with mask overlay
masked_image, _ = update_measure_view(
processed_data, current_view_index
)
return (
masked_image,
measure_points,
'<span style="color: red; font-weight: bold;">Cannot measure on masked areas (shown in grey)</span>',
)
measure_points.append(point2d)
# Get image with mask overlay and ensure it's valid
image, _ = update_measure_view(processed_data, current_view_index)
if image is None:
return None, [], "No image available"
image = image.copy()
points3d = current_view["points3d"]
# Ensure image is in uint8 format for proper cv2 operations
try:
if image.dtype != np.uint8:
if image.max() <= 1.0:
# Image is in [0, 1] range, convert to [0, 255]
image = (image * 255).astype(np.uint8)
else:
# Image is already in [0, 255] range
image = image.astype(np.uint8)
except Exception as e:
print(f"Image conversion error: {e}")
return None, [], f"Image conversion error: {e}"
# Draw circles for points
try:
for p in measure_points:
if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
image = cv2.circle(
image, p, radius=5, color=(255, 0, 0), thickness=2
)
except Exception as e:
print(f"Drawing error: {e}")
return None, [], f"Drawing error: {e}"
depth_text = ""
try:
for i, p in enumerate(measure_points):
if (
current_view["depth"] is not None
and 0 <= p[1] < current_view["depth"].shape[0]
and 0 <= p[0] < current_view["depth"].shape[1]
):
d = current_view["depth"][p[1], p[0]]
depth_text += f"- **P{i + 1} depth: {d:.2f}m.**\n"
else:
# Use Z coordinate of 3D points if depth not available
if (
points3d is not None
and 0 <= p[1] < points3d.shape[0]
and 0 <= p[0] < points3d.shape[1]
):
z = points3d[p[1], p[0], 2]
depth_text += f"- **P{i + 1} Z-coord: {z:.2f}m.**\n"
except Exception as e:
print(f"Depth text error: {e}")
depth_text = f"Error computing depth: {e}\n"
if len(measure_points) == 2:
try:
point1, point2 = measure_points
# Draw line
if (
0 <= point1[0] < image.shape[1]
and 0 <= point1[1] < image.shape[0]
and 0 <= point2[0] < image.shape[1]
and 0 <= point2[1] < image.shape[0]
):
image = cv2.line(
image, point1, point2, color=(255, 0, 0), thickness=2
)
# Compute 3D distance
distance_text = "- **Distance: Unable to compute**"
if (
points3d is not None
and 0 <= point1[1] < points3d.shape[0]
and 0 <= point1[0] < points3d.shape[1]
and 0 <= point2[1] < points3d.shape[0]
and 0 <= point2[0] < points3d.shape[1]
):
try:
p1_3d = points3d[point1[1], point1[0]]
p2_3d = points3d[point2[1], point2[0]]
distance = np.linalg.norm(p1_3d - p2_3d)
distance_text = f"- **Distance: {distance:.2f}m**"
except Exception as e:
print(f"Distance computation error: {e}")
distance_text = f"- **Distance computation error: {e}**"
measure_points = []
text = depth_text + distance_text
print(f"Measurement complete: {text}")
return [image, measure_points, text]
except Exception as e:
print(f"Final measurement error: {e}")
return None, [], f"Measurement error: {e}"
else:
print(f"Single point measurement: {depth_text}")
return [image, measure_points, depth_text]
except Exception as e:
print(f"Overall measure function error: {e}")
return None, [], f"Measure function error: {e}"
def clear_fields():
"""
Clears the 3D viewer, the stored target_dir, and empties the gallery.
"""
return None
def update_log():
"""
Display a quick log message while waiting.
"""
return "Loading and Reconstructing..."
def update_visualization(
target_dir,
frame_filter,
show_cam,
is_example,
filter_black_bg=False,
filter_white_bg=False,
show_mesh=True,
):
"""
Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
and return it for the 3D viewer. If is_example == "True", skip.
"""
# If it's an example click, skip as requested
if is_example == "True":
return (
gr.update(),
"No reconstruction available. Please click the Reconstruct button first.",
)
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return (
gr.update(),
"No reconstruction available. Please click the Reconstruct button first.",
)
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return (
gr.update(),
f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
)
loaded = np.load(predictions_path, allow_pickle=True)
predictions = {key: loaded[key] for key in loaded.keys()}
glbfile = os.path.join(
target_dir,
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
)
if not os.path.exists(glbfile):
glbscene = predictions_to_glb(
predictions,
filter_by_frames=frame_filter,
show_cam=show_cam,
mask_black_bg=filter_black_bg,
mask_white_bg=filter_white_bg,
as_mesh=show_mesh,
)
glbscene.export(file_obj=glbfile)
return (
glbfile,
"Visualization updated.",
)
def update_all_views_on_filter_change(
target_dir,
filter_black_bg,
filter_white_bg,
processed_data,
depth_view_selector,
normal_view_selector,
measure_view_selector,
):
"""
Update all individual view tabs when background filtering checkboxes change.
This regenerates the processed data with new filtering and updates all views.
"""
# Check if we have a valid target directory and predictions
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return processed_data, None, None, None, []
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return processed_data, None, None, None, []
try:
# Load the original predictions and views
loaded = np.load(predictions_path, allow_pickle=True)
predictions = {key: loaded[key] for key in loaded.keys()}
# Load images using MapAnything's load_images function
image_folder_path = os.path.join(target_dir, "images")
views = load_images(image_folder_path)
# Regenerate processed data with new filtering settings
new_processed_data = process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg, filter_white_bg
)
# Get current view indices
try:
depth_view_idx = (
int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
)
except:
depth_view_idx = 0
try:
normal_view_idx = (
int(normal_view_selector.split()[1]) - 1 if normal_view_selector else 0
)
except:
normal_view_idx = 0
try:
measure_view_idx = (
int(measure_view_selector.split()[1]) - 1
if measure_view_selector
else 0
)
except:
measure_view_idx = 0
# Update all views with new filtered data
depth_vis = update_depth_view(new_processed_data, depth_view_idx)
normal_vis = update_normal_view(new_processed_data, normal_view_idx)
measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)
return new_processed_data, depth_vis, normal_vis, measure_img, []
except Exception as e:
print(f"Error updating views on filter change: {e}")
return processed_data, None, None, None, []
# -------------------------------------------------------------------------
# Example scene functions
# -------------------------------------------------------------------------
def get_scene_info(examples_dir):
"""Get information about scenes in the examples directory"""
import glob
scenes = []
if not os.path.exists(examples_dir):
return scenes
for scene_folder in sorted(os.listdir(examples_dir)):
scene_path = os.path.join(examples_dir, scene_folder)
if os.path.isdir(scene_path):
# Find all image files in the scene folder
image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
image_files = []
for ext in image_extensions:
image_files.extend(glob.glob(os.path.join(scene_path, ext)))
image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))
if image_files:
# Sort images and get the first one for thumbnail
image_files = sorted(image_files)
first_image = image_files[0]
num_images = len(image_files)
scenes.append(
{
"name": scene_folder,
"path": scene_path,
"thumbnail": first_image,
"num_images": num_images,
"image_files": image_files,
}
)
return scenes
def load_example_scene(scene_name, examples_dir="examples"):
"""Load a scene from examples directory"""
scenes = get_scene_info(examples_dir)
# Find the selected scene
selected_scene = None
for scene in scenes:
if scene["name"] == scene_name:
selected_scene = scene
break
if selected_scene is None:
return None, None, None, "Scene not found"
# Create target directory and copy images
target_dir, image_paths = handle_uploads(None, selected_scene["image_files"])
return (
None, # Clear reconstruction output
target_dir, # Set target directory
image_paths, # Set gallery
f"Loaded scene '{scene_name}' with {selected_scene['num_images']} images. Click 'Reconstruct' to begin 3D processing.",
)
# -------------------------------------------------------------------------
# 6) Build Gradio UI
# -------------------------------------------------------------------------
theme = get_gradio_theme()
with gr.Blocks(theme=theme, css=GRADIO_CSS) as demo:
# State variables for the tabbed interface
is_example = gr.Textbox(label="is_example", visible=False, value="None")
num_images = gr.Textbox(label="num_images", visible=False, value="None")
processed_data_state = gr.State(value=None)
measure_points_state = gr.State(value=[])
current_view_index = gr.State(value=0) # Track current view index for navigation
gr.HTML(get_header_html(get_logo_base64()))
gr.HTML(get_description_html())
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
with gr.Row():
with gr.Column(scale=2):
input_video = gr.Video(label="Upload Video", interactive=True)
s_time_interval = gr.Slider(
minimum=0.1,
maximum=5.0,
value=1.0,
step=0.1,
label="Sample time interval (take a sample every x sec.)",
interactive=True,
visible=True,
)
input_images = gr.File(
file_count="multiple", label="Upload Images", interactive=True
)
image_gallery = gr.Gallery(
label="Preview",
columns=4,
height="300px",
show_download_button=True,
object_fit="contain",
preview=True,
)
with gr.Column(scale=4):
with gr.Column():
gr.Markdown("**3D Reconstruction (Point Cloud and Camera Poses)**")
log_output = gr.Markdown(
"Please upload a video or images, then click Reconstruct.",
elem_classes=["custom-log"],
)
# Add tabbed interface similar to MoGe
with gr.Tabs():
with gr.Tab("3D View"):
reconstruction_output = gr.Model3D(
height=520,
zoom_speed=0.5,
pan_speed=0.5,
clear_color=[0.0, 0.0, 0.0, 0.0],
key="persistent_3d_viewer",
elem_id="reconstruction_3d_viewer",
)
with gr.Tab("Depth"):
with gr.Row(elem_classes=["navigation-row"]):
prev_depth_btn = gr.Button("◀ Previous", size="sm", scale=1)
depth_view_selector = gr.Dropdown(
choices=["View 1"],
value="View 1",
label="Select View",
scale=2,
interactive=True,
allow_custom_value=True,
)
next_depth_btn = gr.Button("Next ▶", size="sm", scale=1)
depth_map = gr.Image(
type="numpy",
label="Colorized Depth Map",
format="png",
interactive=False,
)
with gr.Tab("Normal"):
with gr.Row(elem_classes=["navigation-row"]):
prev_normal_btn = gr.Button(
"◀ Previous", size="sm", scale=1
)
normal_view_selector = gr.Dropdown(
choices=["View 1"],
value="View 1",
label="Select View",
scale=2,
interactive=True,
allow_custom_value=True,
)
next_normal_btn = gr.Button("Next ▶", size="sm", scale=1)
normal_map = gr.Image(
type="numpy",
label="Normal Map",
format="png",
interactive=False,
)
with gr.Tab("Measure"):
gr.Markdown(MEASURE_INSTRUCTIONS_HTML)
with gr.Row(elem_classes=["navigation-row"]):
prev_measure_btn = gr.Button(
"◀ Previous", size="sm", scale=1
)
measure_view_selector = gr.Dropdown(
choices=["View 1"],
value="View 1",
label="Select View",
scale=2,
interactive=True,
allow_custom_value=True,
)
next_measure_btn = gr.Button("Next ▶", size="sm", scale=1)
measure_image = gr.Image(
type="numpy",
show_label=False,
format="webp",
interactive=False,
sources=[],
)
gr.Markdown(
"**Note:** Light-grey areas indicate regions with no depth information where measurements cannot be taken."
)
measure_text = gr.Markdown("")
with gr.Row():
submit_btn = gr.Button("Reconstruct", scale=1, variant="primary")
clear_btn = gr.ClearButton(
[
input_video,
input_images,
reconstruction_output,
log_output,
target_dir_output,
image_gallery,
],
scale=1,
)
with gr.Row():
frame_filter = gr.Dropdown(
choices=["All"], value="All", label="Show Points from Frame"
)
with gr.Column():
gr.Markdown("### Pointcloud Options: (live updates)")
show_cam = gr.Checkbox(label="Show Camera", value=True)
show_mesh = gr.Checkbox(label="Show Mesh", value=True)
filter_black_bg = gr.Checkbox(
label="Filter Black Background", value=False
)
filter_white_bg = gr.Checkbox(
label="Filter White Background", value=False
)
gr.Markdown("### Reconstruction Options: (updated on next run)")
apply_mask_checkbox = gr.Checkbox(
label="Apply mask for predicted ambiguous depth classes & edges", value=True
)
# ---------------------- Example Scenes Section ----------------------
gr.Markdown("## Example Scenes (lists all scenes in the examples folder)")
gr.Markdown("Click any thumbnail to load the scene for reconstruction.")
# Get scene information
scenes = get_scene_info("examples")
# Create thumbnail grid (4 columns, N rows)
if scenes:
for i in range(0, len(scenes), 4): # Process 4 scenes per row
with gr.Row():
for j in range(4):
scene_idx = i + j
if scene_idx < len(scenes):
scene = scenes[scene_idx]
with gr.Column(scale=1, elem_classes=["clickable-thumbnail"]):
# Clickable thumbnail
scene_img = gr.Image(
value=scene["thumbnail"],
height=150,
interactive=False,
show_label=False,
elem_id=f"scene_thumb_{scene['name']}",
sources=[],
)
# Scene name and image count as text below thumbnail
gr.Markdown(
f"**{scene['name']}** \n {scene['num_images']} images",
elem_classes=["scene-info"],
)
# Connect thumbnail click to load scene
scene_img.select(
fn=lambda name=scene["name"]: load_example_scene(name),
outputs=[
reconstruction_output,
target_dir_output,
image_gallery,
log_output,
],
)
else:
# Empty column to maintain grid structure
with gr.Column(scale=1):
pass
# -------------------------------------------------------------------------
# "Reconstruct" button logic:
# - Clear fields
# - Update log
# - gradio_demo(...) with the existing target_dir
# - Then set is_example = "False"
# -------------------------------------------------------------------------
submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then(
fn=update_log, inputs=[], outputs=[log_output]
).then(
fn=gradio_demo,
inputs=[
target_dir_output,
frame_filter,
show_cam,
filter_black_bg,
filter_white_bg,
apply_mask_checkbox,
show_mesh,
],
outputs=[
reconstruction_output,
log_output,
frame_filter,
processed_data_state,
depth_map,
normal_map,
measure_image,
measure_text,
depth_view_selector,
normal_view_selector,
measure_view_selector,
],
).then(
fn=lambda: "False",
inputs=[],
outputs=[is_example], # set is_example to "False"
)
# -------------------------------------------------------------------------
# Real-time Visualization Updates
# -------------------------------------------------------------------------
frame_filter.change(
update_visualization,
[
target_dir_output,
frame_filter,
show_cam,
is_example,
filter_black_bg,
filter_white_bg,
show_mesh,
],
[reconstruction_output, log_output],
)
show_cam.change(
update_visualization,
[
target_dir_output,
frame_filter,
show_cam,
is_example,
],
[reconstruction_output, log_output],
)
filter_black_bg.change(
update_visualization,
[
target_dir_output,
frame_filter,
show_cam,
is_example,
filter_black_bg,
filter_white_bg,
],
[reconstruction_output, log_output],
).then(
fn=update_all_views_on_filter_change,
inputs=[
target_dir_output,
filter_black_bg,
filter_white_bg,
processed_data_state,
depth_view_selector,
normal_view_selector,
measure_view_selector,
],
outputs=[
processed_data_state,
depth_map,
normal_map,
measure_image,
measure_points_state,
],
)
filter_white_bg.change(
update_visualization,
[
target_dir_output,
frame_filter,
show_cam,
is_example,
filter_black_bg,
filter_white_bg,
show_mesh,
],
[reconstruction_output, log_output],
).then(
fn=update_all_views_on_filter_change,
inputs=[
target_dir_output,
filter_black_bg,
filter_white_bg,
processed_data_state,
depth_view_selector,
normal_view_selector,
measure_view_selector,
],
outputs=[
processed_data_state,
depth_map,
normal_map,
measure_image,
measure_points_state,
],
)
show_mesh.change(
update_visualization,
[
target_dir_output,
frame_filter,
show_cam,
is_example,
filter_black_bg,
filter_white_bg,
show_mesh,
],
[reconstruction_output, log_output],
)
# -------------------------------------------------------------------------
# Auto-update gallery whenever user uploads or changes their files
# -------------------------------------------------------------------------
input_video.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, s_time_interval],
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
)
input_images.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, s_time_interval],
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output],
)
# -------------------------------------------------------------------------
# Measure tab functionality
# -------------------------------------------------------------------------
measure_image.select(
fn=measure,
inputs=[processed_data_state, measure_points_state, measure_view_selector],
outputs=[measure_image, measure_points_state, measure_text],
)
# -------------------------------------------------------------------------
# Navigation functionality for Depth, Normal, and Measure tabs
# -------------------------------------------------------------------------
# Depth tab navigation
prev_depth_btn.click(
fn=lambda processed_data, current_selector: navigate_depth_view(
processed_data, current_selector, -1
),
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_view_selector, depth_map],
)
next_depth_btn.click(
fn=lambda processed_data, current_selector: navigate_depth_view(
processed_data, current_selector, 1
),
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_view_selector, depth_map],
)
depth_view_selector.change(
fn=lambda processed_data, selector_value: (
update_depth_view(
processed_data,
int(selector_value.split()[1]) - 1,
)
if selector_value
else None
),
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_map],
)
# Normal tab navigation
prev_normal_btn.click(
fn=lambda processed_data, current_selector: navigate_normal_view(
processed_data, current_selector, -1
),
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_view_selector, normal_map],
)
next_normal_btn.click(
fn=lambda processed_data, current_selector: navigate_normal_view(
processed_data, current_selector, 1
),
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_view_selector, normal_map],
)
normal_view_selector.change(
fn=lambda processed_data, selector_value: (
update_normal_view(
processed_data,
int(selector_value.split()[1]) - 1,
)
if selector_value
else None
),
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_map],
)
# Measure tab navigation
prev_measure_btn.click(
fn=lambda processed_data, current_selector: navigate_measure_view(
processed_data, current_selector, -1
),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_view_selector, measure_image, measure_points_state],
)
next_measure_btn.click(
fn=lambda processed_data, current_selector: navigate_measure_view(
processed_data, current_selector, 1
),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_view_selector, measure_image, measure_points_state],
)
measure_view_selector.change(
fn=lambda processed_data, selector_value: (
update_measure_view(processed_data, int(selector_value.split()[1]) - 1)
if selector_value
else (None, [])
),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_image, measure_points_state],
)
# -------------------------------------------------------------------------
# Acknowledgement section
# -------------------------------------------------------------------------
gr.HTML(get_acknowledgements_html())
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|