File size: 24,354 Bytes
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""
Training Code for MapAnything.

References:
DUSt3R: https://github.com/naver/dust3r
"""

import datetime
import json
import math
import os
import pickle
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Sized

import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter

import mapanything.utils.train_tools as train_tools
from mapanything.datasets import get_test_data_loader, get_train_data_loader
from mapanything.models import init_model
from mapanything.train.losses import *  # noqa
from mapanything.utils.inference import loss_of_one_batch_multi_view
from mapanything.utils.train_tools import NativeScalerWithGradNormCount as NativeScaler

# Enable TF32 precision if supported (for GPU >= Ampere and PyTorch >= 1.12)
if hasattr(torch.backends.cuda, "matmul") and hasattr(
    torch.backends.cuda.matmul, "allow_tf32"
):
    torch.backends.cuda.matmul.allow_tf32 = True


def train(args):
    """
    Main training function that handles the entire training process.

    This function initializes the distributed training environment, sets up datasets,
    initializes the model, optimizer, and loss functions, and manages the training
    and evaluation loop across multiple epochs.

    In this training, an epoch is just a chunk of the entire dataset.

    Args:
        args: Configuration object containing all training parameters including
              dataset configs, model configs, training parameters, and loss functions.
    """
    # Initialize distributed training if required
    train_tools.init_distributed_mode(args.distributed)
    global_rank = train_tools.get_rank()
    world_size = train_tools.get_world_size()  # noqa

    # Init output directory and device
    print("output_dir: " + args.output_dir)
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)

    print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(", ", ",\n"))

    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)

    # Fix the seed
    seed = args.train_params.seed + train_tools.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)

    cudnn.benchmark = not args.train_params.disable_cudnn_benchmark

    # Datasets and Dataloaders
    print("Building train dataset {:s}".format(args.dataset.train_dataset))
    data_loader_train = build_dataset(
        dataset=args.dataset.train_dataset,
        num_workers=args.dataset.num_workers,
        test=False,
        max_num_of_imgs_per_gpu=args.train_params.max_num_of_imgs_per_gpu,
    )
    print("Building test dataset {:s}".format(args.dataset.test_dataset))
    test_batch_size = 2 * (
        args.train_params.max_num_of_imgs_per_gpu // args.dataset.num_views
    )  # Since we don't have any backward overhead
    data_loader_test = {
        dataset.split("(")[0]: build_dataset(
            dataset=dataset,
            num_workers=args.dataset.num_workers,
            test=True,
            batch_size=test_batch_size,
        )
        for dataset in args.dataset.test_dataset.split("+")
        if "(" in dataset
    }

    # Load Model
    if global_rank == 0:
        model = init_model(
            args.model.model_str,
            args.model.model_config,
            torch_hub_force_reload=args.model.torch_hub_force_reload,
        )
    if torch.distributed.is_initialized():
        torch.distributed.barrier()  # Make sure the model is initialized before proceeding
    if global_rank != 0:
        model = init_model(
            args.model.model_str, args.model.model_config, torch_hub_force_reload=False
        )
    model.to(device)  # Move model to device
    model_without_ddp = model
    print("Model = %s" % str(model_without_ddp))

    # Criterion
    print(f">> Creating train criterion = {args.loss.train_criterion}")
    train_criterion = eval(args.loss.train_criterion).to(device)
    print(
        f">> Creating test criterion = {args.loss.test_criterion or args.loss.train_criterion}"
    )
    test_criterion = eval(args.loss.test_criterion or args.loss.train_criterion).to(
        device
    )

    # Load pretrained model if provided
    if args.model.pretrained:
        print("Loading pretrained: ", args.model.pretrained)
        ckpt = torch.load(
            args.model.pretrained, map_location=device, weights_only=False
        )
        print(model.load_state_dict(ckpt["model"], strict=False))
        del ckpt  # in case it occupies memory

    # Init model for DDP training
    if args.distributed.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.distributed.gpu],
            find_unused_parameters=True,
            static_graph=False,
        )
        model_without_ddp = model.module

    # Optimizer and loss scaler for gradient accumulation
    # Following timm: set wd as 0 for bias and norm layers
    param_groups, param_groups_name_to_idx_map, param_groups_idx_to_name_map = (
        train_tools.get_parameter_groups(
            model_without_ddp,
            args.train_params.lr,
            args.train_params.weight_decay,
            submodule_configs=args.train_params.submodule_configs,
            warn_not_in_submodule=args.train_params.warn_not_in_submodule,
        )
    )
    optimizer = torch.optim.AdamW(
        param_groups, lr=args.train_params.lr, betas=(0.9, 0.95)
    )
    print(optimizer)
    loss_scaler = NativeScaler()

    def write_log_stats(epoch, train_stats, test_stats):
        """
        Writes training and testing statistics to log files and TensorBoard.

        Args:
            epoch: Current epoch number.
            train_stats: Dictionary containing training metrics.
            test_stats: Dictionary containing testing metrics for each test dataset.
        """
        if train_tools.is_main_process():
            if log_writer is not None:
                log_writer.flush()

            log_stats = dict(
                epoch=epoch, **{f"train_{k}": v for k, v in train_stats.items()}
            )
            for test_name in data_loader_test:
                if test_name not in test_stats:
                    continue
                log_stats.update(
                    {test_name + "_" + k: v for k, v in test_stats[test_name].items()}
                )

            with open(
                os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
            ) as f:
                f.write(json.dumps(log_stats) + "\n")

    def save_model(epoch, fname, best_so_far):
        """
        Saves model checkpoint to disk.

        Args:
            epoch: Current epoch number.
            fname: Filename or identifier for the checkpoint.
            best_so_far: Best validation metric achieved so far.
        """
        train_tools.save_model(
            args=args,
            model_without_ddp=model_without_ddp,
            optimizer=optimizer,
            loss_scaler=loss_scaler,
            epoch=epoch,
            fname=fname,
            best_so_far=best_so_far,
        )

    # Resume from a checkpoint if needed
    last_ckpt_fname = os.path.join(args.output_dir, "checkpoint-last.pth")
    if args.train_params.resume and os.path.isfile(last_ckpt_fname):
        args.train_params.resume_ckpt = last_ckpt_fname
    else:
        args.train_params.resume_ckpt = None
    best_so_far = train_tools.load_model(
        train_args=args.train_params,
        model_without_ddp=model_without_ddp,
        optimizer=optimizer,
        loss_scaler=loss_scaler,
    )
    if best_so_far is None:
        best_so_far = float("inf")

    if global_rank == 0 and args.output_dir is not None:
        log_writer = SummaryWriter(log_dir=args.output_dir)
    else:
        log_writer = None

    print(f"Start training for {args.train_params.epochs} epochs")
    start_time = time.time()
    train_stats = test_stats = {}
    for epoch in range(args.train_params.start_epoch, args.train_params.epochs + 1):
        # Save immediately the last checkpoint
        if epoch > args.train_params.start_epoch:
            if (
                args.train_params.save_freq
                and epoch % args.train_params.save_freq == 0
                or epoch == args.train_params.epochs
            ):
                save_model(epoch - 1, "last", best_so_far)

        # Test on multiple datasets
        new_best = False
        test_stats = {}
        if (
            args.train_params.eval_freq > 0
            and epoch % args.train_params.eval_freq == 0
            and epoch > 0
        ):
            for test_name, testset in data_loader_test.items():
                print(f"Testing on {test_name} ...")
                stats = test_one_epoch(
                    model,
                    test_criterion,
                    testset,
                    device,
                    epoch,
                    log_writer=log_writer,
                    args=args,
                    prefix=test_name,
                )
                test_stats[test_name] = stats

            # Calculate average test loss median
            avg_test_loss_med = np.mean(
                [stats["loss_med"] for stats in test_stats.values()]
            )
            test_stats["Average Test Loss Median"] = avg_test_loss_med
            # Save best
            if avg_test_loss_med < best_so_far:
                best_so_far = avg_test_loss_med
                new_best = True

        # Save more stuff
        write_log_stats(epoch, train_stats, test_stats)

        if epoch > args.train_params.start_epoch:
            if args.train_params.keep_freq and epoch % args.train_params.keep_freq == 0:
                save_model(epoch - 1, str(epoch), best_so_far)
            if new_best:
                save_model(epoch - 1, "best", best_so_far)
        if epoch >= args.train_params.epochs:
            break  # exit after writing last test to disk

        # Train
        train_stats = train_one_epoch(
            model,
            train_criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            log_writer=log_writer,
            args=args,
            param_groups_name_to_idx_map=param_groups_name_to_idx_map,
            param_groups_idx_to_name_map=param_groups_idx_to_name_map,
            model_without_ddp=model_without_ddp,
        )

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print("Training time {}".format(total_time_str))

    save_final_model(
        args, args.train_params.epochs, model_without_ddp, best_so_far=best_so_far
    )


def save_final_model(args, epoch, model_without_ddp, best_so_far=None):
    """
    Saves the final model checkpoint after training completion.

    Args:
        args: Configuration object containing output directory information.
        epoch: Current epoch number.
        model_without_ddp: Model state dictionary or model instance without DistributedDataParallel wrapper.
        best_so_far: Optional; Best validation metric achieved during training.
    """
    output_dir = Path(args.output_dir)
    checkpoint_path = output_dir / "checkpoint-final.pth"
    to_save = {
        "args": args,
        "model": model_without_ddp
        if isinstance(model_without_ddp, dict)
        else model_without_ddp.cpu().state_dict(),
        "epoch": epoch,
    }
    if best_so_far is not None:
        to_save["best_so_far"] = best_so_far
    print(f">> Saving model to {checkpoint_path} ...")
    train_tools.save_on_master(to_save, checkpoint_path)


def build_dataset(
    dataset, num_workers, test, batch_size=None, max_num_of_imgs_per_gpu=None
):
    """
    Builds data loaders for training or testing.

    Args:
        dataset: Dataset specification string.
        num_workers: Number of worker processes for data loading.
        test: Boolean flag indicating whether this is a test dataset.
        batch_size: Number of samples per batch. Defaults to None. Used only for testing.
        max_num_of_imgs_per_gpu: Maximum number of images per GPU. Defaults to None. Used only for training.

    Returns:
        DataLoader: PyTorch DataLoader configured for the specified dataset.
    """
    split = ["Train", "Test"][test]
    print(f"Building {split} Data loader for dataset: ", dataset)
    if test:
        assert batch_size is not None, (
            "batch_size must be specified for testing dataloader"
        )
        loader = get_test_data_loader(
            dataset=dataset,
            batch_size=batch_size,
            num_workers=num_workers,
            pin_mem=True,
            shuffle=False,
            drop_last=False,
        )
    else:
        assert max_num_of_imgs_per_gpu is not None, (
            "max_num_of_imgs_per_gpu must be specified for training dataloader"
        )
        loader = get_train_data_loader(
            dataset=dataset,
            max_num_of_imgs_per_gpu=max_num_of_imgs_per_gpu,
            num_workers=num_workers,
            pin_mem=True,
            shuffle=True,
            drop_last=True,
        )

    print(f"{split} dataset length: ", len(loader))
    return loader


def train_one_epoch(
    model: torch.nn.Module,
    criterion: torch.nn.Module,
    data_loader: Sized,
    optimizer: torch.optim.Optimizer,
    device: torch.device,
    epoch: int,
    loss_scaler,
    args,
    log_writer=None,
    param_groups_name_to_idx_map=None,
    param_groups_idx_to_name_map=None,
    model_without_ddp=None,
):
    """
    Trains the model for one epoch.
    Epoch is just a chunk of the entire dataset.

    This function handles the training loop for a single epoch, including forward/backward passes,
    gradient accumulation, learning rate scheduling, and logging metrics.

    Args:
        model: The neural network model to train.
        criterion: Loss function to optimize.
        data_loader: DataLoader providing the training data.
        optimizer: Optimizer for updating model parameters.
        device: Device to run training on (CPU or GPU).
        epoch: Current epoch number.
        loss_scaler: Scaler for gradient accumulation and mixed precision training.
        args: Configuration object containing training parameters.
        log_writer: Optional; TensorBoard SummaryWriter for logging.
        param_groups_name_to_idx_map: Mapping from parameter group names to indices.
        param_groups_idx_to_name_map: Mapping from parameter group indices to names.
        model_without_ddp: Model without DistributedDataParallel wrapper for debugging.

    Returns:
        dict: Dictionary containing training metrics averaged over the epoch.
    """
    model.train(True)
    metric_logger = train_tools.MetricLogger(delimiter="  ")
    for submodule_name in param_groups_name_to_idx_map:
        lr_name = f"lr_{submodule_name}" if submodule_name != "default" else "lr"
        metric_logger.add_meter(
            lr_name, train_tools.SmoothedValue(window_size=1, fmt="{value:.6f}")
        )
    header = "Epoch: [{}]".format(epoch)
    accum_iter = args.train_params.accum_iter

    if log_writer is not None:
        print("log_dir: {}".format(log_writer.log_dir))

    if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"):
        data_loader.dataset.set_epoch(epoch)
    if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"):
        data_loader.sampler.set_epoch(epoch)
    if hasattr(data_loader, "batch_sampler") and hasattr(
        data_loader.batch_sampler, "set_epoch"
    ):
        data_loader.batch_sampler.set_epoch(epoch)

    optimizer.zero_grad()

    for data_iter_step, batch in enumerate(
        metric_logger.log_every(data_loader, args.train_params.print_freq, header)
    ):
        n_views = len(batch)
        epoch_f = epoch + data_iter_step / len(data_loader)

        # We use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            train_tools.adjust_learning_rate(
                optimizer,
                epoch_f,
                args.train_params,
                param_groups_idx_to_name_map,
                args.train_params.submodule_configs,
            )

        loss_tuple = loss_of_one_batch_multi_view(
            batch,
            model,
            criterion,
            device,
            use_amp=bool(args.train_params.amp),
            amp_dtype=args.train_params.amp_dtype,
            ret="loss",
        )
        loss, loss_details = loss_tuple  # criterion returns two values
        if n_views > 2:
            loss = loss * (
                2 / n_views
            )  # scale the loss relative to the number of views (base is 2 views)
        loss_value = float(loss)

        if not math.isfinite(loss_value) or (loss_value > 1000):
            print("Loss is {}, stopping training".format(loss_value), force=True)
            print(f"Loss Details: {loss_details}", force=True)
            print(f"Epoch: {epoch}, Data Iteration: {data_iter_step}", force=True)
            # Save the current batch to the output folder for further inspection
            for view_idx, view in enumerate(batch):
                view_cpu = {}
                for k, v in view.items():
                    view_cpu[k] = v.cpu() if isinstance(v, torch.Tensor) else v
                with open(
                    os.path.join(args.output_dir, f"batch_view_{view_idx}.pkl"), "wb"
                ) as f:
                    pickle.dump(view_cpu, f)
            # Save the model to the output folder for further inspection
            checkpoint_debug_path = os.path.join(
                args.output_dir, "checkpoint-debug.pth"
            )
            to_save_debug = {
                "args": args,
                "model": (
                    model_without_ddp
                    if isinstance(model_without_ddp, dict)
                    else model_without_ddp.cpu().state_dict()
                ),
                "epoch": epoch,
                "data_iter_step": data_iter_step,
            }
            torch.save(to_save_debug, checkpoint_debug_path)
            print(f"Saved debugging material to {args.output_dir}", force=True)
            sys.exit(1)

        # Scale the loss by the number of gradient accumulation iterations
        loss /= accum_iter

        # Compute the scaled gradients (also clip the gradients to max norm of 1)
        gradient_norm = loss_scaler(
            loss,
            optimizer,
            parameters=model.parameters(),
            update_grad=(data_iter_step + 1) % accum_iter == 0,
            clip_grad=1.0,
        )

        # Zero out the gradients to prepare for the next iteration of gradient descent
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        del loss
        del batch

        metric_logger.update(epoch=epoch_f)
        for submodule_name in param_groups_name_to_idx_map:
            lr_name = f"lr_{submodule_name}" if submodule_name != "default" else "lr"
            log_lr = optimizer.param_groups[
                param_groups_name_to_idx_map[submodule_name][0]
            ]["lr"]
            metric_logger.meters[lr_name].update(log_lr)
        metric_logger.update(loss=loss_value, **loss_details)

        if (data_iter_step + 1) % accum_iter == 0 and (
            (data_iter_step + 1) % (accum_iter * args.train_params.print_freq)
        ) == 0:
            loss_value_reduce = train_tools.all_reduce_mean(
                loss_value
            )  # MUST BE EXECUTED BY ALL NODES
            if log_writer is None:
                continue
            """
            We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int(epoch_f * 1000)
            log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x)
            if gradient_norm is not None:
                log_writer.add_scalar("train_grad_norm", gradient_norm, epoch_1000x)
            for submodule_name in param_groups_name_to_idx_map:
                lr_name = (
                    f"train_lr_{submodule_name}"
                    if submodule_name != "default"
                    else "train_lr"
                )
                log_lr = optimizer.param_groups[
                    param_groups_name_to_idx_map[submodule_name][0]
                ]["lr"]
                log_writer.add_scalar(lr_name, log_lr, epoch_1000x)
            log_writer.add_scalar("train_iter", epoch_1000x, epoch_1000x)
            for name, val in loss_details.items():
                log_writer.add_scalar("train_" + name, val, epoch_1000x)

    # # Gather the stats from all processes
    # metric_logger.synchronize_between_processes()
    # print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def test_one_epoch(
    model: torch.nn.Module,
    criterion: torch.nn.Module,
    data_loader: Sized,
    device: torch.device,
    epoch: int,
    args,
    log_writer=None,
    prefix="test",
):
    """
    Evaluates the model on a test dataset for one epoch.
    Epoch is just a chunk of the entire dataset.

    This function runs evaluation on the test dataset without computing gradients,
    and collects metrics for model performance assessment.

    Args:
        model: The neural network model to evaluate.
        criterion: Loss function for evaluation.
        data_loader: DataLoader providing the test data.
        device: Device to run evaluation on (CPU or GPU).
        epoch: Current epoch number.
        args: Configuration object containing evaluation parameters.
        log_writer: Optional; TensorBoard SummaryWriter for logging.
        prefix: String prefix for logging metrics.

    Returns:
        dict: Dictionary containing evaluation metrics (average and median values).
    """
    model.eval()
    metric_logger = train_tools.MetricLogger(delimiter="  ")
    metric_logger.meters = defaultdict(
        lambda: train_tools.SmoothedValue(window_size=9**9)
    )
    header = "Test Epoch: [{}]".format(epoch)

    if log_writer is not None:
        print("log_dir: {}".format(log_writer.log_dir))

    if args.train_params.freeze_val_samples_across_all_epochs:
        dataloader_epoch = 0
    else:
        dataloader_epoch = epoch
    if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"):
        data_loader.dataset.set_epoch(dataloader_epoch)
    if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"):
        data_loader.sampler.set_epoch(dataloader_epoch)
    if hasattr(data_loader, "batch_sampler") and hasattr(
        data_loader.batch_sampler, "set_epoch"
    ):
        data_loader.batch_sampler.set_epoch(dataloader_epoch)

    for _, batch in enumerate(
        metric_logger.log_every(data_loader, args.train_params.print_freq, header)
    ):
        n_views = len(batch)
        loss_tuple = loss_of_one_batch_multi_view(
            batch,
            model,
            criterion,
            device,
            use_amp=bool(args.train_params.amp),
            amp_dtype=args.train_params.amp_dtype,
            ret="loss",
        )
        loss_value, loss_details = loss_tuple  # criterion returns two values
        if n_views > 2:
            loss_value = loss_value * (
                2 / n_views
            )  # scale the loss relative to the number of views (base is 2 views)
        metric_logger.update(loss=float(loss_value), **loss_details)

    # # Gather the stats from all processes
    # metric_logger.synchronize_between_processes()
    # print("Averaged stats:", metric_logger)

    aggs = [("avg", "global_avg"), ("med", "median")]
    results = {
        f"{k}_{tag}": getattr(meter, attr)
        for k, meter in metric_logger.meters.items()
        for tag, attr in aggs
    }

    if log_writer is not None:
        for name, val in results.items():
            log_writer.add_scalar(prefix + "_" + name, val, 1000 * epoch)

    return results