Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 60,405 Bytes
			
			| 9507532 75d19ab 9507532 65dafca 478d9e0 65dafca 9507532 eb74057 c226bc0 9507532 eb74057 9507532 eb74057 c226bc0 d691be0 9507532 9a006f8 eb74057 9507532 eb74057 9507532 a288991 9507532 9f367f7 9507532 f7d060f 9507532 eb74057 f7d060f 9507532 37de32d 9507532 37de32d 65dafca 19d7794 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 37de32d 9507532 37de32d 9507532 37de32d eb74057 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 478d9e0 9507532 478d9e0 9507532 478d9e0 65dafca 478d9e0 65dafca 478d9e0 65dafca 478d9e0 65dafca 9507532 478d9e0 9507532 37de32d 9f367f7 9507532 65dafca 9507532 9f367f7 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 37de32d 9507532 9f367f7 9507532 9f367f7 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 c226bc0 9507532 9f367f7 9507532 c226bc0 9507532 9f367f7 9507532 478d9e0 9507532 478d9e0 9507532 478d9e0 9507532 478d9e0 9507532 478d9e0 9507532 65dafca 9507532 37de32d eb74057 37de32d 9507532 478d9e0 9507532 a288991 9507532 a288991 9507532 a288991 37de32d 65dafca 37de32d 9507532 c226bc0 9507532 37de32d 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 9f367f7 9507532 c226bc0 9f367f7 c226bc0 9507532 478d9e0 9507532 478d9e0 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 | # Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# conda activate hf3.10
import gc
import os
import shutil
import sys
import time
from datetime import datetime
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from pillow_heif import register_heif_opener
register_heif_opener()
sys.path.append("mapanything/")
from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
from mapanything.utils.hf_utils.css_and_html import (
    GRADIO_CSS,
    MEASURE_INSTRUCTIONS_HTML,
    get_acknowledgements_html,
    get_description_html,
    get_gradio_theme,
    get_header_html,
)
from mapanything.utils.hf_utils.hf_helpers import initialize_mapanything_model
from mapanything.utils.hf_utils.visual_util import predictions_to_glb
from mapanything.utils.image import load_images, rgb
def get_logo_base64():
    """Convert WAI logo to base64 for embedding in HTML"""
    import base64
    logo_path = "examples/WAI-Logo/wai_logo.png"
    try:
        with open(logo_path, "rb") as img_file:
            img_data = img_file.read()
            base64_str = base64.b64encode(img_data).decode()
            return f"data:image/png;base64,{base64_str}"
    except FileNotFoundError:
        return None
# MapAnything Configuration
high_level_config = {
    "path": "configs/train.yaml",
    "hf_model_name": "facebook/map-anything",
    "model_str": "mapanything",
    "config_overrides": [
        "machine=aws",
        "model=mapanything",
        "model/task=images_only",
        "model.encoder.uses_torch_hub=false",
    ],
    "checkpoint_name": "model.safetensors",
    "config_name": "config.json",
    "trained_with_amp": True,
    "trained_with_amp_dtype": "bf16",
    "data_norm_type": "dinov2",
    "patch_size": 14,
    "resolution": 518,
}
# Initialize model - this will be done on GPU when needed
model = None
# -------------------------------------------------------------------------
# 1) Core model inference
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_model(
    target_dir,
    apply_mask=True,
    mask_edges=True,
    filter_black_bg=False,
    filter_white_bg=False,
):
    """
    Run the MapAnything model on images in the 'target_dir/images' folder and return predictions.
    """
    global model
    import torch  # Ensure torch is available in function scope
    print(f"Processing images from {target_dir}")
    # Device check
    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)
    # Initialize model if not already done
    if model is None:
        model = initialize_mapanything_model(high_level_config, device)
    else:
        model = model.to(device)
    model.eval()
    # Load images using MapAnything's load_images function
    print("Loading images...")
    image_folder_path = os.path.join(target_dir, "images")
    views = load_images(image_folder_path)
    print(f"Loaded {len(views)} images")
    if len(views) == 0:
        raise ValueError("No images found. Check your upload.")
    # Run model inference
    print("Running inference...")
    # apply_mask: Whether to apply the non-ambiguous mask to the output. Defaults to True.
    # mask_edges: Whether to compute an edge mask based on normals and depth and apply it to the output. Defaults to True.
    # Use checkbox values - mask_edges is set to True by default since there's no UI control for it
    outputs = model.infer(
        views, apply_mask=apply_mask, mask_edges=True, memory_efficient_inference=False
    )
    # Convert predictions to format expected by visualization
    predictions = {}
    # Initialize lists for the required keys
    extrinsic_list = []
    intrinsic_list = []
    world_points_list = []
    depth_maps_list = []
    images_list = []
    final_mask_list = []
    # Loop through the outputs
    for pred in outputs:
        # Extract data from predictions
        depthmap_torch = pred["depth_z"][0].squeeze(-1)  # (H, W)
        intrinsics_torch = pred["intrinsics"][0]  # (3, 3)
        camera_pose_torch = pred["camera_poses"][0]  # (4, 4)
        # Compute new pts3d using depth, intrinsics, and camera pose
        pts3d_computed, valid_mask = depthmap_to_world_frame(
            depthmap_torch, intrinsics_torch, camera_pose_torch
        )
        # Convert to numpy arrays for visualization
        # Check if mask key exists in pred, if not, fill with boolean trues in the size of depthmap_torch
        if "mask" in pred:
            mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
        else:
            # Fill with boolean trues in the size of depthmap_torch
            mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)
        # Combine with valid depth mask
        mask = mask & valid_mask.cpu().numpy()
        image = pred["img_no_norm"][0].cpu().numpy()
        # Append to lists
        extrinsic_list.append(camera_pose_torch.cpu().numpy())
        intrinsic_list.append(intrinsics_torch.cpu().numpy())
        world_points_list.append(pts3d_computed.cpu().numpy())
        depth_maps_list.append(depthmap_torch.cpu().numpy())
        images_list.append(image)  # Add image to list
        final_mask_list.append(mask)  # Add final_mask to list
    # Convert lists to numpy arrays with required shapes
    # extrinsic: (S, 3, 4) - batch of camera extrinsic matrices
    predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)
    # intrinsic: (S, 3, 3) - batch of camera intrinsic matrices
    predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)
    # world_points: (S, H, W, 3) - batch of 3D world points
    predictions["world_points"] = np.stack(world_points_list, axis=0)
    # depth: (S, H, W, 1) or (S, H, W) - batch of depth maps
    depth_maps = np.stack(depth_maps_list, axis=0)
    # Add channel dimension if needed to match (S, H, W, 1) format
    if len(depth_maps.shape) == 3:
        depth_maps = depth_maps[..., np.newaxis]
    predictions["depth"] = depth_maps
    # images: (S, H, W, 3) - batch of input images
    predictions["images"] = np.stack(images_list, axis=0)
    # final_mask: (S, H, W) - batch of final masks for filtering
    predictions["final_mask"] = np.stack(final_mask_list, axis=0)
    # Process data for visualization tabs (depth, normal, measure)
    processed_data = process_predictions_for_visualization(
        predictions, views, high_level_config, filter_black_bg, filter_white_bg
    )
    # Clean up
    torch.cuda.empty_cache()
    return predictions, processed_data
def update_view_selectors(processed_data):
    """Update view selector dropdowns based on available views"""
    if processed_data is None or len(processed_data) == 0:
        choices = ["View 1"]
    else:
        num_views = len(processed_data)
        choices = [f"View {i + 1}" for i in range(num_views)]
    return (
        gr.Dropdown(choices=choices, value=choices[0]),  # depth_view_selector
        gr.Dropdown(choices=choices, value=choices[0]),  # normal_view_selector
        gr.Dropdown(choices=choices, value=choices[0]),  # measure_view_selector
    )
def get_view_data_by_index(processed_data, view_index):
    """Get view data by index, handling bounds"""
    if processed_data is None or len(processed_data) == 0:
        return None
    view_keys = list(processed_data.keys())
    if view_index < 0 or view_index >= len(view_keys):
        view_index = 0
    return processed_data[view_keys[view_index]]
def update_depth_view(processed_data, view_index):
    """Update depth view for a specific view index"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None or view_data["depth"] is None:
        return None
    return colorize_depth(view_data["depth"], mask=view_data.get("mask"))
def update_normal_view(processed_data, view_index):
    """Update normal view for a specific view index"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None or view_data["normal"] is None:
        return None
    return colorize_normal(view_data["normal"], mask=view_data.get("mask"))
def update_measure_view(processed_data, view_index):
    """Update measure view for a specific view index with mask overlay"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None:
        return None, []  # image, measure_points
    # Get the base image
    image = view_data["image"].copy()
    # Ensure image is in uint8 format
    if image.dtype != np.uint8:
        if image.max() <= 1.0:
            image = (image * 255).astype(np.uint8)
        else:
            image = image.astype(np.uint8)
    # Apply mask overlay if mask is available
    if view_data["mask"] is not None:
        mask = view_data["mask"]
        # Create light grey overlay for masked areas
        # Masked areas (False values) will be overlaid with light grey
        invalid_mask = ~mask  # Areas where mask is False
        if invalid_mask.any():
            # Create a light grey overlay (RGB: 192, 192, 192)
            overlay_color = np.array([255, 220, 220], dtype=np.uint8)
            # Apply overlay with some transparency
            alpha = 0.5  # Transparency level
            for c in range(3):  # RGB channels
                image[:, :, c] = np.where(
                    invalid_mask,
                    (1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
                    image[:, :, c],
                ).astype(np.uint8)
    return image, []
def navigate_depth_view(processed_data, current_selector_value, direction):
    """Navigate depth view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None
    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0
    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views
    new_selector_value = f"View {new_view + 1}"
    depth_vis = update_depth_view(processed_data, new_view)
    return new_selector_value, depth_vis
def navigate_normal_view(processed_data, current_selector_value, direction):
    """Navigate normal view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None
    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0
    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views
    new_selector_value = f"View {new_view + 1}"
    normal_vis = update_normal_view(processed_data, new_view)
    return new_selector_value, normal_vis
def navigate_measure_view(processed_data, current_selector_value, direction):
    """Navigate measure view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None, []
    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0
    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views
    new_selector_value = f"View {new_view + 1}"
    measure_image, measure_points = update_measure_view(processed_data, new_view)
    return new_selector_value, measure_image, measure_points
def populate_visualization_tabs(processed_data):
    """Populate the depth, normal, and measure tabs with processed data"""
    if processed_data is None or len(processed_data) == 0:
        return None, None, None, []
    # Use update functions to ensure confidence filtering is applied from the start
    depth_vis = update_depth_view(processed_data, 0)
    normal_vis = update_normal_view(processed_data, 0)
    measure_img, _ = update_measure_view(processed_data, 0)
    return depth_vis, normal_vis, measure_img, []
# -------------------------------------------------------------------------
# 2) Handle uploaded video/images --> produce target_dir + images
# -------------------------------------------------------------------------
def handle_uploads(unified_upload, s_time_interval=1.0):
    """
    Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
    images or extracted frames from video into it. Return (target_dir, image_paths).
    """
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()
    # Create a unique folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    target_dir = f"input_images_{timestamp}"
    target_dir_images = os.path.join(target_dir, "images")
    # Clean up if somehow that folder already exists
    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)
    image_paths = []
    # --- Handle uploaded files (both images and videos) ---
    if unified_upload is not None:
        for file_data in unified_upload:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = str(file_data)
            file_ext = os.path.splitext(file_path)[1].lower()
            # Check if it's a video file
            video_extensions = [
                ".mp4",
                ".avi",
                ".mov",
                ".mkv",
                ".wmv",
                ".flv",
                ".webm",
                ".m4v",
                ".3gp",
            ]
            if file_ext in video_extensions:
                # Handle as video
                vs = cv2.VideoCapture(file_path)
                fps = vs.get(cv2.CAP_PROP_FPS)
                frame_interval = int(fps * s_time_interval)  # frames per interval
                count = 0
                video_frame_num = 0
                while True:
                    gotit, frame = vs.read()
                    if not gotit:
                        break
                    count += 1
                    if count % frame_interval == 0:
                        # Use original filename as prefix for frames
                        base_name = os.path.splitext(os.path.basename(file_path))[0]
                        image_path = os.path.join(
                            target_dir_images, f"{base_name}_{video_frame_num:06}.png"
                        )
                        cv2.imwrite(image_path, frame)
                        image_paths.append(image_path)
                        video_frame_num += 1
                vs.release()
                print(
                    f"Extracted {video_frame_num} frames from video: {os.path.basename(file_path)}"
                )
            else:
                # Handle as image
                # Check if the file is a HEIC image
                if file_ext in [".heic", ".heif"]:
                    # Convert HEIC to JPEG for better gallery compatibility
                    try:
                        with Image.open(file_path) as img:
                            # Convert to RGB if necessary (HEIC can have different color modes)
                            if img.mode not in ("RGB", "L"):
                                img = img.convert("RGB")
                            # Create JPEG filename
                            base_name = os.path.splitext(os.path.basename(file_path))[0]
                            dst_path = os.path.join(
                                target_dir_images, f"{base_name}.jpg"
                            )
                            # Save as JPEG with high quality
                            img.save(dst_path, "JPEG", quality=95)
                            image_paths.append(dst_path)
                            print(
                                f"Converted HEIC to JPEG: {os.path.basename(file_path)} -> {os.path.basename(dst_path)}"
                            )
                    except Exception as e:
                        print(f"Error converting HEIC file {file_path}: {e}")
                        # Fall back to copying as is
                        dst_path = os.path.join(
                            target_dir_images, os.path.basename(file_path)
                        )
                        shutil.copy(file_path, dst_path)
                        image_paths.append(dst_path)
                else:
                    # Regular image files - copy as is
                    dst_path = os.path.join(
                        target_dir_images, os.path.basename(file_path)
                    )
                    shutil.copy(file_path, dst_path)
                    image_paths.append(dst_path)
    # Sort final images for gallery
    image_paths = sorted(image_paths)
    end_time = time.time()
    print(
        f"Files processed to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths
# -------------------------------------------------------------------------
# 3) Update gallery on upload
# -------------------------------------------------------------------------
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
    """
    Whenever user uploads or changes files, immediately handle them
    and show in the gallery. Return (target_dir, image_paths).
    If nothing is uploaded, returns "None" and empty list.
    """
    if not input_video and not input_images:
        return None, None, None, None
    target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
    return (
        None,
        target_dir,
        image_paths,
        "Upload complete. Click 'Reconstruct' to begin 3D processing.",
    )
# -------------------------------------------------------------------------
# 4) Reconstruction: uses the target_dir plus any viz parameters
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def gradio_demo(
    target_dir,
    frame_filter="All",
    show_cam=True,
    filter_black_bg=False,
    filter_white_bg=False,
    apply_mask=True,
    show_mesh=True,
):
    """
    Perform reconstruction using the already-created target_dir/images.
    """
    if not os.path.isdir(target_dir) or target_dir == "None":
        return None, "No valid target directory found. Please upload first.", None, None
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()
    # Prepare frame_filter dropdown
    target_dir_images = os.path.join(target_dir, "images")
    all_files = (
        sorted(os.listdir(target_dir_images))
        if os.path.isdir(target_dir_images)
        else []
    )
    all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
    frame_filter_choices = ["All"] + all_files
    print("Running MapAnything model...")
    with torch.no_grad():
        predictions, processed_data = run_model(target_dir, apply_mask)
    # Save predictions
    prediction_save_path = os.path.join(target_dir, "predictions.npz")
    np.savez(prediction_save_path, **predictions)
    # Handle None frame_filter
    if frame_filter is None:
        frame_filter = "All"
    # Build a GLB file name
    glbfile = os.path.join(
        target_dir,
        f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
    )
    # Convert predictions to GLB
    glbscene = predictions_to_glb(
        predictions,
        filter_by_frames=frame_filter,
        show_cam=show_cam,
        mask_black_bg=filter_black_bg,
        mask_white_bg=filter_white_bg,
        as_mesh=show_mesh,  # Use the show_mesh parameter
    )
    glbscene.export(file_obj=glbfile)
    # Cleanup
    del predictions
    gc.collect()
    torch.cuda.empty_cache()
    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds")
    log_msg = (
        f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
    )
    # Populate visualization tabs with processed data
    depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(
        processed_data
    )
    # Update view selectors based on available views
    depth_selector, normal_selector, measure_selector = update_view_selectors(
        processed_data
    )
    return (
        glbfile,
        log_msg,
        gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
        processed_data,
        depth_vis,
        normal_vis,
        measure_img,
        "",  # measure_text (empty initially)
        depth_selector,
        normal_selector,
        measure_selector,
    )
# -------------------------------------------------------------------------
# 5) Helper functions for UI resets + re-visualization
# -------------------------------------------------------------------------
def colorize_depth(depth_map, mask=None):
    """Convert depth map to colorized visualization with optional mask"""
    if depth_map is None:
        return None
    # Normalize depth to 0-1 range
    depth_normalized = depth_map.copy()
    valid_mask = depth_normalized > 0
    # Apply additional mask if provided (for background filtering)
    if mask is not None:
        valid_mask = valid_mask & mask
    if valid_mask.sum() > 0:
        valid_depths = depth_normalized[valid_mask]
        p5 = np.percentile(valid_depths, 5)
        p95 = np.percentile(valid_depths, 95)
        depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)
    # Apply colormap
    import matplotlib.pyplot as plt
    colormap = plt.cm.turbo_r
    colored = colormap(depth_normalized)
    colored = (colored[:, :, :3] * 255).astype(np.uint8)
    # Set invalid pixels to white
    colored[~valid_mask] = [255, 255, 255]
    return colored
def colorize_normal(normal_map, mask=None):
    """Convert normal map to colorized visualization with optional mask"""
    if normal_map is None:
        return None
    # Create a copy for modification
    normal_vis = normal_map.copy()
    # Apply mask if provided (set masked areas to [0, 0, 0] which becomes grey after normalization)
    if mask is not None:
        invalid_mask = ~mask
        normal_vis[invalid_mask] = [0, 0, 0]  # Set invalid areas to zero
    # Normalize normals to [0, 1] range for visualization
    normal_vis = (normal_vis + 1.0) / 2.0
    normal_vis = (normal_vis * 255).astype(np.uint8)
    return normal_vis
def process_predictions_for_visualization(
    predictions, views, high_level_config, filter_black_bg=False, filter_white_bg=False
):
    """Extract depth, normal, and 3D points from predictions for visualization"""
    processed_data = {}
    # Process each view
    for view_idx, view in enumerate(views):
        # Get image
        image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])
        # Get predicted points
        pred_pts3d = predictions["world_points"][view_idx]
        # Initialize data for this view
        view_data = {
            "image": image[0],
            "points3d": pred_pts3d,
            "depth": None,
            "normal": None,
            "mask": None,
        }
        # Start with the final mask from predictions
        mask = predictions["final_mask"][view_idx].copy()
        # Apply black background filtering if enabled
        if filter_black_bg:
            # Get the image colors (ensure they're in 0-255 range)
            view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
            # Filter out black background pixels (sum of RGB < 16)
            black_bg_mask = view_colors.sum(axis=2) >= 16
            mask = mask & black_bg_mask
        # Apply white background filtering if enabled
        if filter_white_bg:
            # Get the image colors (ensure they're in 0-255 range)
            view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
            # Filter out white background pixels (all RGB > 240)
            white_bg_mask = ~(
                (view_colors[:, :, 0] > 240)
                & (view_colors[:, :, 1] > 240)
                & (view_colors[:, :, 2] > 240)
            )
            mask = mask & white_bg_mask
        view_data["mask"] = mask
        view_data["depth"] = predictions["depth"][view_idx].squeeze()
        normals, _ = points_to_normals(pred_pts3d, mask=view_data["mask"])
        view_data["normal"] = normals
        processed_data[view_idx] = view_data
    return processed_data
def reset_measure(processed_data):
    """Reset measure points"""
    if processed_data is None or len(processed_data) == 0:
        return None, [], ""
    # Return the first view image
    first_view = list(processed_data.values())[0]
    return first_view["image"], [], ""
def measure(
    processed_data, measure_points, current_view_selector, event: gr.SelectData
):
    """Handle measurement on images"""
    try:
        print(f"Measure function called with selector: {current_view_selector}")
        if processed_data is None or len(processed_data) == 0:
            return None, [], "No data available"
        # Use the currently selected view instead of always using the first view
        try:
            current_view_index = int(current_view_selector.split()[1]) - 1
        except:
            current_view_index = 0
        print(f"Using view index: {current_view_index}")
        # Get view data safely
        if current_view_index < 0 or current_view_index >= len(processed_data):
            current_view_index = 0
        view_keys = list(processed_data.keys())
        current_view = processed_data[view_keys[current_view_index]]
        if current_view is None:
            return None, [], "No view data available"
        point2d = event.index[0], event.index[1]
        print(f"Clicked point: {point2d}")
        # Check if the clicked point is in a masked area (prevent interaction)
        if (
            current_view["mask"] is not None
            and 0 <= point2d[1] < current_view["mask"].shape[0]
            and 0 <= point2d[0] < current_view["mask"].shape[1]
        ):
            # Check if the point is in a masked (invalid) area
            if not current_view["mask"][point2d[1], point2d[0]]:
                print(f"Clicked point {point2d} is in masked area, ignoring click")
                # Always return image with mask overlay
                masked_image, _ = update_measure_view(
                    processed_data, current_view_index
                )
                return (
                    masked_image,
                    measure_points,
                    '<span style="color: red; font-weight: bold;">Cannot measure on masked areas (shown in grey)</span>',
                )
        measure_points.append(point2d)
        # Get image with mask overlay and ensure it's valid
        image, _ = update_measure_view(processed_data, current_view_index)
        if image is None:
            return None, [], "No image available"
        image = image.copy()
        points3d = current_view["points3d"]
        # Ensure image is in uint8 format for proper cv2 operations
        try:
            if image.dtype != np.uint8:
                if image.max() <= 1.0:
                    # Image is in [0, 1] range, convert to [0, 255]
                    image = (image * 255).astype(np.uint8)
                else:
                    # Image is already in [0, 255] range
                    image = image.astype(np.uint8)
        except Exception as e:
            print(f"Image conversion error: {e}")
            return None, [], f"Image conversion error: {e}"
        # Draw circles for points
        try:
            for p in measure_points:
                if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
                    image = cv2.circle(
                        image, p, radius=5, color=(255, 0, 0), thickness=2
                    )
        except Exception as e:
            print(f"Drawing error: {e}")
            return None, [], f"Drawing error: {e}"
        depth_text = ""
        try:
            for i, p in enumerate(measure_points):
                if (
                    current_view["depth"] is not None
                    and 0 <= p[1] < current_view["depth"].shape[0]
                    and 0 <= p[0] < current_view["depth"].shape[1]
                ):
                    d = current_view["depth"][p[1], p[0]]
                    depth_text += f"- **P{i + 1} depth: {d:.2f}m.**\n"
                else:
                    # Use Z coordinate of 3D points if depth not available
                    if (
                        points3d is not None
                        and 0 <= p[1] < points3d.shape[0]
                        and 0 <= p[0] < points3d.shape[1]
                    ):
                        z = points3d[p[1], p[0], 2]
                        depth_text += f"- **P{i + 1} Z-coord: {z:.2f}m.**\n"
        except Exception as e:
            print(f"Depth text error: {e}")
            depth_text = f"Error computing depth: {e}\n"
        if len(measure_points) == 2:
            try:
                point1, point2 = measure_points
                # Draw line
                if (
                    0 <= point1[0] < image.shape[1]
                    and 0 <= point1[1] < image.shape[0]
                    and 0 <= point2[0] < image.shape[1]
                    and 0 <= point2[1] < image.shape[0]
                ):
                    image = cv2.line(
                        image, point1, point2, color=(255, 0, 0), thickness=2
                    )
                # Compute 3D distance
                distance_text = "- **Distance: Unable to compute**"
                if (
                    points3d is not None
                    and 0 <= point1[1] < points3d.shape[0]
                    and 0 <= point1[0] < points3d.shape[1]
                    and 0 <= point2[1] < points3d.shape[0]
                    and 0 <= point2[0] < points3d.shape[1]
                ):
                    try:
                        p1_3d = points3d[point1[1], point1[0]]
                        p2_3d = points3d[point2[1], point2[0]]
                        distance = np.linalg.norm(p1_3d - p2_3d)
                        distance_text = f"- **Distance: {distance:.2f}m**"
                    except Exception as e:
                        print(f"Distance computation error: {e}")
                        distance_text = f"- **Distance computation error: {e}**"
                measure_points = []
                text = depth_text + distance_text
                print(f"Measurement complete: {text}")
                return [image, measure_points, text]
            except Exception as e:
                print(f"Final measurement error: {e}")
                return None, [], f"Measurement error: {e}"
        else:
            print(f"Single point measurement: {depth_text}")
            return [image, measure_points, depth_text]
    except Exception as e:
        print(f"Overall measure function error: {e}")
        return None, [], f"Measure function error: {e}"
def clear_fields():
    """
    Clears the 3D viewer, the stored target_dir, and empties the gallery.
    """
    return None
def update_log():
    """
    Display a quick log message while waiting.
    """
    return "Loading and Reconstructing..."
def update_visualization(
    target_dir,
    frame_filter,
    show_cam,
    is_example,
    filter_black_bg=False,
    filter_white_bg=False,
    show_mesh=True,
):
    """
    Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
    and return it for the 3D viewer. If is_example == "True", skip.
    """
    # If it's an example click, skip as requested
    if is_example == "True":
        return (
            gr.update(),
            "No reconstruction available. Please click the Reconstruct button first.",
        )
    if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
        return (
            gr.update(),
            "No reconstruction available. Please click the Reconstruct button first.",
        )
    predictions_path = os.path.join(target_dir, "predictions.npz")
    if not os.path.exists(predictions_path):
        return (
            gr.update(),
            f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
        )
    loaded = np.load(predictions_path, allow_pickle=True)
    predictions = {key: loaded[key] for key in loaded.keys()}
    glbfile = os.path.join(
        target_dir,
        f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
    )
    if not os.path.exists(glbfile):
        glbscene = predictions_to_glb(
            predictions,
            filter_by_frames=frame_filter,
            show_cam=show_cam,
            mask_black_bg=filter_black_bg,
            mask_white_bg=filter_white_bg,
            as_mesh=show_mesh,
        )
        glbscene.export(file_obj=glbfile)
    return (
        glbfile,
        "Visualization updated.",
    )
def update_all_views_on_filter_change(
    target_dir,
    filter_black_bg,
    filter_white_bg,
    processed_data,
    depth_view_selector,
    normal_view_selector,
    measure_view_selector,
):
    """
    Update all individual view tabs when background filtering checkboxes change.
    This regenerates the processed data with new filtering and updates all views.
    """
    # Check if we have a valid target directory and predictions
    if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
        return processed_data, None, None, None, []
    predictions_path = os.path.join(target_dir, "predictions.npz")
    if not os.path.exists(predictions_path):
        return processed_data, None, None, None, []
    try:
        # Load the original predictions and views
        loaded = np.load(predictions_path, allow_pickle=True)
        predictions = {key: loaded[key] for key in loaded.keys()}
        # Load images using MapAnything's load_images function
        image_folder_path = os.path.join(target_dir, "images")
        views = load_images(image_folder_path)
        # Regenerate processed data with new filtering settings
        new_processed_data = process_predictions_for_visualization(
            predictions, views, high_level_config, filter_black_bg, filter_white_bg
        )
        # Get current view indices
        try:
            depth_view_idx = (
                int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
            )
        except:
            depth_view_idx = 0
        try:
            normal_view_idx = (
                int(normal_view_selector.split()[1]) - 1 if normal_view_selector else 0
            )
        except:
            normal_view_idx = 0
        try:
            measure_view_idx = (
                int(measure_view_selector.split()[1]) - 1
                if measure_view_selector
                else 0
            )
        except:
            measure_view_idx = 0
        # Update all views with new filtered data
        depth_vis = update_depth_view(new_processed_data, depth_view_idx)
        normal_vis = update_normal_view(new_processed_data, normal_view_idx)
        measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)
        return new_processed_data, depth_vis, normal_vis, measure_img, []
    except Exception as e:
        print(f"Error updating views on filter change: {e}")
        return processed_data, None, None, None, []
# -------------------------------------------------------------------------
# Example scene functions
# -------------------------------------------------------------------------
def get_scene_info(examples_dir):
    """Get information about scenes in the examples directory"""
    import glob
    scenes = []
    if not os.path.exists(examples_dir):
        return scenes
    for scene_folder in sorted(os.listdir(examples_dir)):
        scene_path = os.path.join(examples_dir, scene_folder)
        if os.path.isdir(scene_path):
            # Find all image files in the scene folder
            image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
            image_files = []
            for ext in image_extensions:
                image_files.extend(glob.glob(os.path.join(scene_path, ext)))
                image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))
            if image_files:
                # Sort images and get the first one for thumbnail
                image_files = sorted(image_files)
                first_image = image_files[0]
                num_images = len(image_files)
                scenes.append(
                    {
                        "name": scene_folder,
                        "path": scene_path,
                        "thumbnail": first_image,
                        "num_images": num_images,
                        "image_files": image_files,
                    }
                )
    return scenes
def load_example_scene(scene_name, examples_dir="examples"):
    """Load a scene from examples directory"""
    scenes = get_scene_info(examples_dir)
    # Find the selected scene
    selected_scene = None
    for scene in scenes:
        if scene["name"] == scene_name:
            selected_scene = scene
            break
    if selected_scene is None:
        return None, None, None, "Scene not found"
    # Create file-like objects for the unified upload system
    # Convert image file paths to the format expected by unified_upload
    file_objects = []
    for image_path in selected_scene["image_files"]:
        file_objects.append(image_path)
    # Create target directory and copy images using the unified upload system
    target_dir, image_paths = handle_uploads(file_objects, 1.0)
    return (
        None,  # Clear reconstruction output
        target_dir,  # Set target directory
        image_paths,  # Set gallery
        f"Loaded scene '{scene_name}' with {selected_scene['num_images']} images. Click 'Reconstruct' to begin 3D processing.",
    )
# -------------------------------------------------------------------------
# 6) Build Gradio UI
# -------------------------------------------------------------------------
theme = get_gradio_theme()
with gr.Blocks(theme=theme, css=GRADIO_CSS) as demo:
    # State variables for the tabbed interface
    is_example = gr.Textbox(label="is_example", visible=False, value="None")
    num_images = gr.Textbox(label="num_images", visible=False, value="None")
    processed_data_state = gr.State(value=None)
    measure_points_state = gr.State(value=[])
    current_view_index = gr.State(value=0)  # Track current view index for navigation
    gr.HTML(get_header_html(get_logo_base64()))
    gr.HTML(get_description_html())
    target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
    with gr.Row():
        with gr.Column(scale=2):
            # Unified upload component for both videos and images
            unified_upload = gr.File(
                file_count="multiple",
                label="Upload Video or Images",
                interactive=True,
                file_types=["image", "video"],
            )
            with gr.Row():
                s_time_interval = gr.Slider(
                    minimum=0.1,
                    maximum=5.0,
                    value=1.0,
                    step=0.1,
                    label="Video sample time interval (take a sample every x sec.)",
                    interactive=True,
                    visible=True,
                    scale=3,
                )
                resample_btn = gr.Button(
                    "Resample Video",
                    visible=False,
                    variant="secondary",
                    scale=1,
                )
            image_gallery = gr.Gallery(
                label="Preview",
                columns=4,
                height="300px",
                show_download_button=True,
                object_fit="contain",
                preview=True,
            )
            clear_uploads_btn = gr.ClearButton(
                [unified_upload, image_gallery],
                value="Clear Uploads",
                variant="secondary",
                size="sm",
            )
        with gr.Column(scale=4):
            with gr.Column():
                gr.Markdown(
                    "**Metric 3D Reconstruction (Point Cloud and Camera Poses)**"
                )
                log_output = gr.Markdown(
                    "Please upload a video or images, then click Reconstruct.",
                    elem_classes=["custom-log"],
                )
                # Add tabbed interface similar to MoGe
                with gr.Tabs():
                    with gr.Tab("3D View"):
                        reconstruction_output = gr.Model3D(
                            height=520,
                            zoom_speed=0.5,
                            pan_speed=0.5,
                            clear_color=[0.0, 0.0, 0.0, 0.0],
                            key="persistent_3d_viewer",
                            elem_id="reconstruction_3d_viewer",
                        )
                    with gr.Tab("Depth"):
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_depth_btn = gr.Button("◀ Previous", size="sm", scale=1)
                            depth_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_depth_btn = gr.Button("Next ▶", size="sm", scale=1)
                        depth_map = gr.Image(
                            type="numpy",
                            label="Colorized Depth Map",
                            format="png",
                            interactive=False,
                        )
                    with gr.Tab("Normal"):
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_normal_btn = gr.Button(
                                "◀ Previous", size="sm", scale=1
                            )
                            normal_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_normal_btn = gr.Button("Next ▶", size="sm", scale=1)
                        normal_map = gr.Image(
                            type="numpy",
                            label="Normal Map",
                            format="png",
                            interactive=False,
                        )
                    with gr.Tab("Measure"):
                        gr.Markdown(MEASURE_INSTRUCTIONS_HTML)
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_measure_btn = gr.Button(
                                "◀ Previous", size="sm", scale=1
                            )
                            measure_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_measure_btn = gr.Button("Next ▶", size="sm", scale=1)
                        measure_image = gr.Image(
                            type="numpy",
                            show_label=False,
                            format="webp",
                            interactive=False,
                            sources=[],
                        )
                        gr.Markdown(
                            "**Note:** Light-grey areas indicate regions with no depth information where measurements cannot be taken."
                        )
                        measure_text = gr.Markdown("")
            with gr.Row():
                submit_btn = gr.Button("Reconstruct", scale=1, variant="primary")
                clear_btn = gr.ClearButton(
                    [
                        unified_upload,
                        reconstruction_output,
                        log_output,
                        target_dir_output,
                        image_gallery,
                    ],
                    scale=1,
                )
            with gr.Row():
                frame_filter = gr.Dropdown(
                    choices=["All"], value="All", label="Show Points from Frame"
                )
                with gr.Column():
                    gr.Markdown("### Pointcloud Options: (live updates)")
                    show_cam = gr.Checkbox(label="Show Camera", value=True)
                    show_mesh = gr.Checkbox(label="Show Mesh", value=True)
                    filter_black_bg = gr.Checkbox(
                        label="Filter Black Background", value=False
                    )
                    filter_white_bg = gr.Checkbox(
                        label="Filter White Background", value=False
                    )
                    gr.Markdown("### Reconstruction Options: (updated on next run)")
                    apply_mask_checkbox = gr.Checkbox(
                        label="Apply mask for predicted ambiguous depth classes & edges",
                        value=True,
                    )
    # ---------------------- Example Scenes Section ----------------------
    gr.Markdown("## Example Scenes (lists all scenes in the examples folder)")
    gr.Markdown("Click any thumbnail to load the scene for reconstruction.")
    # Get scene information
    scenes = get_scene_info("examples")
    # Create thumbnail grid (4 columns, N rows)
    if scenes:
        for i in range(0, len(scenes), 4):  # Process 4 scenes per row
            with gr.Row():
                for j in range(4):
                    scene_idx = i + j
                    if scene_idx < len(scenes):
                        scene = scenes[scene_idx]
                        with gr.Column(scale=1, elem_classes=["clickable-thumbnail"]):
                            # Clickable thumbnail
                            scene_img = gr.Image(
                                value=scene["thumbnail"],
                                height=150,
                                interactive=False,
                                show_label=False,
                                elem_id=f"scene_thumb_{scene['name']}",
                                sources=[],
                            )
                            # Scene name and image count as text below thumbnail
                            gr.Markdown(
                                f"**{scene['name']}** \n {scene['num_images']} images",
                                elem_classes=["scene-info"],
                            )
                            # Connect thumbnail click to load scene
                            scene_img.select(
                                fn=lambda name=scene["name"]: load_example_scene(name),
                                outputs=[
                                    reconstruction_output,
                                    target_dir_output,
                                    image_gallery,
                                    log_output,
                                ],
                            )
                    else:
                        # Empty column to maintain grid structure
                        with gr.Column(scale=1):
                            pass
    # -------------------------------------------------------------------------
    # "Reconstruct" button logic:
    #  - Clear fields
    #  - Update log
    #  - gradio_demo(...) with the existing target_dir
    #  - Then set is_example = "False"
    # -------------------------------------------------------------------------
    submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then(
        fn=update_log, inputs=[], outputs=[log_output]
    ).then(
        fn=gradio_demo,
        inputs=[
            target_dir_output,
            frame_filter,
            show_cam,
            filter_black_bg,
            filter_white_bg,
            apply_mask_checkbox,
            show_mesh,
        ],
        outputs=[
            reconstruction_output,
            log_output,
            frame_filter,
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_text,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
    ).then(
        fn=lambda: "False",
        inputs=[],
        outputs=[is_example],  # set is_example to "False"
    )
    # -------------------------------------------------------------------------
    # Real-time Visualization Updates
    # -------------------------------------------------------------------------
    frame_filter.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    )
    show_cam.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    filter_black_bg.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
        ],
        [reconstruction_output, log_output],
    ).then(
        fn=update_all_views_on_filter_change,
        inputs=[
            target_dir_output,
            filter_black_bg,
            filter_white_bg,
            processed_data_state,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
        outputs=[
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_points_state,
        ],
    )
    filter_white_bg.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    ).then(
        fn=update_all_views_on_filter_change,
        inputs=[
            target_dir_output,
            filter_black_bg,
            filter_white_bg,
            processed_data_state,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
        outputs=[
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_points_state,
        ],
    )
    show_mesh.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    )
    # -------------------------------------------------------------------------
    # Auto-update gallery whenever user uploads or changes their files
    # -------------------------------------------------------------------------
    def update_gallery_on_unified_upload(files, interval):
        if not files:
            return None, None, None
        target_dir, image_paths = handle_uploads(files, interval)
        return (
            target_dir,
            image_paths,
            "Upload complete. Click 'Reconstruct' to begin 3D processing.",
        )
    def show_resample_button(files):
        """Show the resample button only if there are uploaded files containing videos"""
        if not files:
            return gr.update(visible=False)
        # Check if any uploaded files are videos
        video_extensions = [
            ".mp4",
            ".avi",
            ".mov",
            ".mkv",
            ".wmv",
            ".flv",
            ".webm",
            ".m4v",
            ".3gp",
        ]
        has_video = False
        for file_data in files:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = str(file_data)
            file_ext = os.path.splitext(file_path)[1].lower()
            if file_ext in video_extensions:
                has_video = True
                break
        return gr.update(visible=has_video)
    def hide_resample_button():
        """Hide the resample button after use"""
        return gr.update(visible=False)
    def resample_video_with_new_interval(files, new_interval, current_target_dir):
        """Resample video with new slider value"""
        if not files:
            return (
                current_target_dir,
                None,
                "No files to resample.",
                gr.update(visible=False),
            )
        # Check if we have videos to resample
        video_extensions = [
            ".mp4",
            ".avi",
            ".mov",
            ".mkv",
            ".wmv",
            ".flv",
            ".webm",
            ".m4v",
            ".3gp",
        ]
        has_video = any(
            os.path.splitext(
                str(file_data["name"] if isinstance(file_data, dict) else file_data)
            )[1].lower()
            in video_extensions
            for file_data in files
        )
        if not has_video:
            return (
                current_target_dir,
                None,
                "No videos found to resample.",
                gr.update(visible=False),
            )
        # Clean up old target directory if it exists
        if (
            current_target_dir
            and current_target_dir != "None"
            and os.path.exists(current_target_dir)
        ):
            shutil.rmtree(current_target_dir)
        # Process files with new interval
        target_dir, image_paths = handle_uploads(files, new_interval)
        return (
            target_dir,
            image_paths,
            f"Video resampled with {new_interval}s interval. Click 'Reconstruct' to begin 3D processing.",
            gr.update(visible=False),
        )
    unified_upload.change(
        fn=update_gallery_on_unified_upload,
        inputs=[unified_upload, s_time_interval],
        outputs=[target_dir_output, image_gallery, log_output],
    ).then(
        fn=show_resample_button,
        inputs=[unified_upload],
        outputs=[resample_btn],
    )
    # Show resample button when slider changes (only if files are uploaded)
    s_time_interval.change(
        fn=show_resample_button,
        inputs=[unified_upload],
        outputs=[resample_btn],
    )
    # Handle resample button click
    resample_btn.click(
        fn=resample_video_with_new_interval,
        inputs=[unified_upload, s_time_interval, target_dir_output],
        outputs=[target_dir_output, image_gallery, log_output, resample_btn],
    )
    # -------------------------------------------------------------------------
    # Measure tab functionality
    # -------------------------------------------------------------------------
    measure_image.select(
        fn=measure,
        inputs=[processed_data_state, measure_points_state, measure_view_selector],
        outputs=[measure_image, measure_points_state, measure_text],
    )
    # -------------------------------------------------------------------------
    # Navigation functionality for Depth, Normal, and Measure tabs
    # -------------------------------------------------------------------------
    # Depth tab navigation
    prev_depth_btn.click(
        fn=lambda processed_data, current_selector: navigate_depth_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_view_selector, depth_map],
    )
    next_depth_btn.click(
        fn=lambda processed_data, current_selector: navigate_depth_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_view_selector, depth_map],
    )
    depth_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_depth_view(
                processed_data,
                int(selector_value.split()[1]) - 1,
            )
            if selector_value
            else None
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_map],
    )
    # Normal tab navigation
    prev_normal_btn.click(
        fn=lambda processed_data, current_selector: navigate_normal_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_view_selector, normal_map],
    )
    next_normal_btn.click(
        fn=lambda processed_data, current_selector: navigate_normal_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_view_selector, normal_map],
    )
    normal_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_normal_view(
                processed_data,
                int(selector_value.split()[1]) - 1,
            )
            if selector_value
            else None
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_map],
    )
    # Measure tab navigation
    prev_measure_btn.click(
        fn=lambda processed_data, current_selector: navigate_measure_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_view_selector, measure_image, measure_points_state],
    )
    next_measure_btn.click(
        fn=lambda processed_data, current_selector: navigate_measure_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_view_selector, measure_image, measure_points_state],
    )
    measure_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_measure_view(processed_data, int(selector_value.split()[1]) - 1)
            if selector_value
            else (None, [])
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_image, measure_points_state],
    )
    # -------------------------------------------------------------------------
    # Acknowledgement section
    # -------------------------------------------------------------------------
    gr.HTML(get_acknowledgements_html())
    demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
 | 
