File size: 60,405 Bytes
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
75d19ab
 
9507532
 
 
 
 
65dafca
478d9e0
65dafca
 
9507532
 
 
eb74057
 
c226bc0
 
9507532
 
 
 
 
eb74057
 
9507532
 
 
 
 
eb74057
c226bc0
d691be0
9507532
 
 
 
 
 
 
 
 
 
 
 
9a006f8
eb74057
9507532
 
 
 
 
 
eb74057
 
9507532
a288991
9507532
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
 
 
 
 
 
 
9507532
 
 
 
f7d060f
 
9507532
 
 
 
 
 
 
 
eb74057
f7d060f
9507532
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
37de32d
 
 
 
65dafca
19d7794
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
37de32d
 
 
 
 
 
9507532
37de32d
 
 
 
9507532
37de32d
 
 
 
 
 
 
9507532
37de32d
 
9507532
37de32d
9507532
37de32d
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
9f367f7
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
 
9507532
 
 
 
9f367f7
9507532
 
37de32d
 
9507532
 
 
 
9f367f7
9507532
 
 
37de32d
9507532
 
 
 
37de32d
 
9507532
37de32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb74057
37de32d
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
37de32d
 
9507532
 
 
 
 
 
 
 
478d9e0
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478d9e0
 
 
9507532
 
 
478d9e0
 
65dafca
478d9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65dafca
478d9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65dafca
478d9e0
 
 
 
 
65dafca
 
9507532
 
 
 
 
 
478d9e0
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9f367f7
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65dafca
9507532
 
 
 
 
 
 
 
 
 
 
 
9f367f7
9507532
 
 
 
 
 
 
 
 
9f367f7
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
 
9507532
 
 
 
 
 
9f367f7
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
 
9507532
 
 
9f367f7
 
 
 
 
 
 
9507532
 
9f367f7
9507532
 
 
 
 
9f367f7
 
 
9507532
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
9f367f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
9f367f7
37de32d
9507532
37de32d
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
37de32d
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c226bc0
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
9507532
 
 
 
 
 
 
 
 
c226bc0
9507532
 
 
 
 
 
 
 
 
9f367f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478d9e0
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478d9e0
 
 
 
9507532
478d9e0
9507532
478d9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
478d9e0
 
 
 
 
 
 
9507532
 
65dafca
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
eb74057
37de32d
9507532
 
 
 
 
 
478d9e0
9507532
 
 
 
 
 
 
 
 
 
 
 
 
a288991
9507532
a288991
9507532
 
 
 
 
 
a288991
37de32d
65dafca
 
37de32d
9507532
c226bc0
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
9f367f7
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
9f367f7
9507532
 
 
 
 
 
 
 
 
 
9f367f7
 
 
9507532
 
 
9f367f7
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
c226bc0
 
 
9f367f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c226bc0
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
478d9e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
478d9e0
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
 
9507532
37de32d
9507532
 
 
 
37de32d
 
9507532
37de32d
9507532
 
 
 
37de32d
9507532
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
37de32d
 
9507532
37de32d
9507532
 
 
 
37de32d
 
9507532
37de32d
9507532
 
 
 
37de32d
9507532
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# conda activate hf3.10

import gc
import os
import shutil
import sys
import time
from datetime import datetime

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from pillow_heif import register_heif_opener

register_heif_opener()

sys.path.append("mapanything/")

from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
from mapanything.utils.hf_utils.css_and_html import (
    GRADIO_CSS,
    MEASURE_INSTRUCTIONS_HTML,
    get_acknowledgements_html,
    get_description_html,
    get_gradio_theme,
    get_header_html,
)
from mapanything.utils.hf_utils.hf_helpers import initialize_mapanything_model
from mapanything.utils.hf_utils.visual_util import predictions_to_glb
from mapanything.utils.image import load_images, rgb


def get_logo_base64():
    """Convert WAI logo to base64 for embedding in HTML"""
    import base64

    logo_path = "examples/WAI-Logo/wai_logo.png"
    try:
        with open(logo_path, "rb") as img_file:
            img_data = img_file.read()
            base64_str = base64.b64encode(img_data).decode()
            return f"data:image/png;base64,{base64_str}"
    except FileNotFoundError:
        return None


# MapAnything Configuration
high_level_config = {
    "path": "configs/train.yaml",
    "hf_model_name": "facebook/map-anything",
    "model_str": "mapanything",
    "config_overrides": [
        "machine=aws",
        "model=mapanything",
        "model/task=images_only",
        "model.encoder.uses_torch_hub=false",
    ],
    "checkpoint_name": "model.safetensors",
    "config_name": "config.json",
    "trained_with_amp": True,
    "trained_with_amp_dtype": "bf16",
    "data_norm_type": "dinov2",
    "patch_size": 14,
    "resolution": 518,
}

# Initialize model - this will be done on GPU when needed
model = None


# -------------------------------------------------------------------------
# 1) Core model inference
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_model(
    target_dir,
    apply_mask=True,
    mask_edges=True,
    filter_black_bg=False,
    filter_white_bg=False,
):
    """
    Run the MapAnything model on images in the 'target_dir/images' folder and return predictions.
    """
    global model
    import torch  # Ensure torch is available in function scope

    print(f"Processing images from {target_dir}")

    # Device check
    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)

    # Initialize model if not already done
    if model is None:
        model = initialize_mapanything_model(high_level_config, device)

    else:
        model = model.to(device)

    model.eval()

    # Load images using MapAnything's load_images function
    print("Loading images...")
    image_folder_path = os.path.join(target_dir, "images")
    views = load_images(image_folder_path)

    print(f"Loaded {len(views)} images")
    if len(views) == 0:
        raise ValueError("No images found. Check your upload.")

    # Run model inference
    print("Running inference...")
    # apply_mask: Whether to apply the non-ambiguous mask to the output. Defaults to True.
    # mask_edges: Whether to compute an edge mask based on normals and depth and apply it to the output. Defaults to True.
    # Use checkbox values - mask_edges is set to True by default since there's no UI control for it
    outputs = model.infer(
        views, apply_mask=apply_mask, mask_edges=True, memory_efficient_inference=False
    )

    # Convert predictions to format expected by visualization
    predictions = {}

    # Initialize lists for the required keys
    extrinsic_list = []
    intrinsic_list = []
    world_points_list = []
    depth_maps_list = []
    images_list = []
    final_mask_list = []

    # Loop through the outputs
    for pred in outputs:
        # Extract data from predictions
        depthmap_torch = pred["depth_z"][0].squeeze(-1)  # (H, W)
        intrinsics_torch = pred["intrinsics"][0]  # (3, 3)
        camera_pose_torch = pred["camera_poses"][0]  # (4, 4)

        # Compute new pts3d using depth, intrinsics, and camera pose
        pts3d_computed, valid_mask = depthmap_to_world_frame(
            depthmap_torch, intrinsics_torch, camera_pose_torch
        )

        # Convert to numpy arrays for visualization
        # Check if mask key exists in pred, if not, fill with boolean trues in the size of depthmap_torch
        if "mask" in pred:
            mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
        else:
            # Fill with boolean trues in the size of depthmap_torch
            mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)

        # Combine with valid depth mask
        mask = mask & valid_mask.cpu().numpy()

        image = pred["img_no_norm"][0].cpu().numpy()

        # Append to lists
        extrinsic_list.append(camera_pose_torch.cpu().numpy())
        intrinsic_list.append(intrinsics_torch.cpu().numpy())
        world_points_list.append(pts3d_computed.cpu().numpy())
        depth_maps_list.append(depthmap_torch.cpu().numpy())
        images_list.append(image)  # Add image to list
        final_mask_list.append(mask)  # Add final_mask to list

    # Convert lists to numpy arrays with required shapes
    # extrinsic: (S, 3, 4) - batch of camera extrinsic matrices
    predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)

    # intrinsic: (S, 3, 3) - batch of camera intrinsic matrices
    predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)

    # world_points: (S, H, W, 3) - batch of 3D world points
    predictions["world_points"] = np.stack(world_points_list, axis=0)

    # depth: (S, H, W, 1) or (S, H, W) - batch of depth maps
    depth_maps = np.stack(depth_maps_list, axis=0)
    # Add channel dimension if needed to match (S, H, W, 1) format
    if len(depth_maps.shape) == 3:
        depth_maps = depth_maps[..., np.newaxis]

    predictions["depth"] = depth_maps

    # images: (S, H, W, 3) - batch of input images
    predictions["images"] = np.stack(images_list, axis=0)

    # final_mask: (S, H, W) - batch of final masks for filtering
    predictions["final_mask"] = np.stack(final_mask_list, axis=0)

    # Process data for visualization tabs (depth, normal, measure)
    processed_data = process_predictions_for_visualization(
        predictions, views, high_level_config, filter_black_bg, filter_white_bg
    )

    # Clean up
    torch.cuda.empty_cache()

    return predictions, processed_data


def update_view_selectors(processed_data):
    """Update view selector dropdowns based on available views"""
    if processed_data is None or len(processed_data) == 0:
        choices = ["View 1"]
    else:
        num_views = len(processed_data)
        choices = [f"View {i + 1}" for i in range(num_views)]

    return (
        gr.Dropdown(choices=choices, value=choices[0]),  # depth_view_selector
        gr.Dropdown(choices=choices, value=choices[0]),  # normal_view_selector
        gr.Dropdown(choices=choices, value=choices[0]),  # measure_view_selector
    )


def get_view_data_by_index(processed_data, view_index):
    """Get view data by index, handling bounds"""
    if processed_data is None or len(processed_data) == 0:
        return None

    view_keys = list(processed_data.keys())
    if view_index < 0 or view_index >= len(view_keys):
        view_index = 0

    return processed_data[view_keys[view_index]]


def update_depth_view(processed_data, view_index):
    """Update depth view for a specific view index"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None or view_data["depth"] is None:
        return None

    return colorize_depth(view_data["depth"], mask=view_data.get("mask"))


def update_normal_view(processed_data, view_index):
    """Update normal view for a specific view index"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None or view_data["normal"] is None:
        return None

    return colorize_normal(view_data["normal"], mask=view_data.get("mask"))


def update_measure_view(processed_data, view_index):
    """Update measure view for a specific view index with mask overlay"""
    view_data = get_view_data_by_index(processed_data, view_index)
    if view_data is None:
        return None, []  # image, measure_points

    # Get the base image
    image = view_data["image"].copy()

    # Ensure image is in uint8 format
    if image.dtype != np.uint8:
        if image.max() <= 1.0:
            image = (image * 255).astype(np.uint8)
        else:
            image = image.astype(np.uint8)

    # Apply mask overlay if mask is available
    if view_data["mask"] is not None:
        mask = view_data["mask"]

        # Create light grey overlay for masked areas
        # Masked areas (False values) will be overlaid with light grey
        invalid_mask = ~mask  # Areas where mask is False

        if invalid_mask.any():
            # Create a light grey overlay (RGB: 192, 192, 192)
            overlay_color = np.array([255, 220, 220], dtype=np.uint8)

            # Apply overlay with some transparency
            alpha = 0.5  # Transparency level
            for c in range(3):  # RGB channels
                image[:, :, c] = np.where(
                    invalid_mask,
                    (1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
                    image[:, :, c],
                ).astype(np.uint8)

    return image, []


def navigate_depth_view(processed_data, current_selector_value, direction):
    """Navigate depth view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None

    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0

    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views

    new_selector_value = f"View {new_view + 1}"
    depth_vis = update_depth_view(processed_data, new_view)

    return new_selector_value, depth_vis


def navigate_normal_view(processed_data, current_selector_value, direction):
    """Navigate normal view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None

    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0

    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views

    new_selector_value = f"View {new_view + 1}"
    normal_vis = update_normal_view(processed_data, new_view)

    return new_selector_value, normal_vis


def navigate_measure_view(processed_data, current_selector_value, direction):
    """Navigate measure view (direction: -1 for previous, +1 for next)"""
    if processed_data is None or len(processed_data) == 0:
        return "View 1", None, []

    # Parse current view number
    try:
        current_view = int(current_selector_value.split()[1]) - 1
    except:
        current_view = 0

    num_views = len(processed_data)
    new_view = (current_view + direction) % num_views

    new_selector_value = f"View {new_view + 1}"
    measure_image, measure_points = update_measure_view(processed_data, new_view)

    return new_selector_value, measure_image, measure_points


def populate_visualization_tabs(processed_data):
    """Populate the depth, normal, and measure tabs with processed data"""
    if processed_data is None or len(processed_data) == 0:
        return None, None, None, []

    # Use update functions to ensure confidence filtering is applied from the start
    depth_vis = update_depth_view(processed_data, 0)
    normal_vis = update_normal_view(processed_data, 0)
    measure_img, _ = update_measure_view(processed_data, 0)

    return depth_vis, normal_vis, measure_img, []


# -------------------------------------------------------------------------
# 2) Handle uploaded video/images --> produce target_dir + images
# -------------------------------------------------------------------------
def handle_uploads(unified_upload, s_time_interval=1.0):
    """
    Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
    images or extracted frames from video into it. Return (target_dir, image_paths).
    """
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Create a unique folder name
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    target_dir = f"input_images_{timestamp}"
    target_dir_images = os.path.join(target_dir, "images")

    # Clean up if somehow that folder already exists
    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)

    image_paths = []

    # --- Handle uploaded files (both images and videos) ---
    if unified_upload is not None:
        for file_data in unified_upload:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = str(file_data)

            file_ext = os.path.splitext(file_path)[1].lower()

            # Check if it's a video file
            video_extensions = [
                ".mp4",
                ".avi",
                ".mov",
                ".mkv",
                ".wmv",
                ".flv",
                ".webm",
                ".m4v",
                ".3gp",
            ]
            if file_ext in video_extensions:
                # Handle as video
                vs = cv2.VideoCapture(file_path)
                fps = vs.get(cv2.CAP_PROP_FPS)
                frame_interval = int(fps * s_time_interval)  # frames per interval

                count = 0
                video_frame_num = 0
                while True:
                    gotit, frame = vs.read()
                    if not gotit:
                        break
                    count += 1
                    if count % frame_interval == 0:
                        # Use original filename as prefix for frames
                        base_name = os.path.splitext(os.path.basename(file_path))[0]
                        image_path = os.path.join(
                            target_dir_images, f"{base_name}_{video_frame_num:06}.png"
                        )
                        cv2.imwrite(image_path, frame)
                        image_paths.append(image_path)
                        video_frame_num += 1
                vs.release()
                print(
                    f"Extracted {video_frame_num} frames from video: {os.path.basename(file_path)}"
                )

            else:
                # Handle as image
                # Check if the file is a HEIC image
                if file_ext in [".heic", ".heif"]:
                    # Convert HEIC to JPEG for better gallery compatibility
                    try:
                        with Image.open(file_path) as img:
                            # Convert to RGB if necessary (HEIC can have different color modes)
                            if img.mode not in ("RGB", "L"):
                                img = img.convert("RGB")

                            # Create JPEG filename
                            base_name = os.path.splitext(os.path.basename(file_path))[0]
                            dst_path = os.path.join(
                                target_dir_images, f"{base_name}.jpg"
                            )

                            # Save as JPEG with high quality
                            img.save(dst_path, "JPEG", quality=95)
                            image_paths.append(dst_path)
                            print(
                                f"Converted HEIC to JPEG: {os.path.basename(file_path)} -> {os.path.basename(dst_path)}"
                            )
                    except Exception as e:
                        print(f"Error converting HEIC file {file_path}: {e}")
                        # Fall back to copying as is
                        dst_path = os.path.join(
                            target_dir_images, os.path.basename(file_path)
                        )
                        shutil.copy(file_path, dst_path)
                        image_paths.append(dst_path)
                else:
                    # Regular image files - copy as is
                    dst_path = os.path.join(
                        target_dir_images, os.path.basename(file_path)
                    )
                    shutil.copy(file_path, dst_path)
                    image_paths.append(dst_path)

    # Sort final images for gallery
    image_paths = sorted(image_paths)

    end_time = time.time()
    print(
        f"Files processed to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths


# -------------------------------------------------------------------------
# 3) Update gallery on upload
# -------------------------------------------------------------------------
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
    """
    Whenever user uploads or changes files, immediately handle them
    and show in the gallery. Return (target_dir, image_paths).
    If nothing is uploaded, returns "None" and empty list.
    """
    if not input_video and not input_images:
        return None, None, None, None
    target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
    return (
        None,
        target_dir,
        image_paths,
        "Upload complete. Click 'Reconstruct' to begin 3D processing.",
    )


# -------------------------------------------------------------------------
# 4) Reconstruction: uses the target_dir plus any viz parameters
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def gradio_demo(
    target_dir,
    frame_filter="All",
    show_cam=True,
    filter_black_bg=False,
    filter_white_bg=False,
    apply_mask=True,
    show_mesh=True,
):
    """
    Perform reconstruction using the already-created target_dir/images.
    """
    if not os.path.isdir(target_dir) or target_dir == "None":
        return None, "No valid target directory found. Please upload first.", None, None

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    # Prepare frame_filter dropdown
    target_dir_images = os.path.join(target_dir, "images")
    all_files = (
        sorted(os.listdir(target_dir_images))
        if os.path.isdir(target_dir_images)
        else []
    )
    all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
    frame_filter_choices = ["All"] + all_files

    print("Running MapAnything model...")
    with torch.no_grad():
        predictions, processed_data = run_model(target_dir, apply_mask)

    # Save predictions
    prediction_save_path = os.path.join(target_dir, "predictions.npz")
    np.savez(prediction_save_path, **predictions)

    # Handle None frame_filter
    if frame_filter is None:
        frame_filter = "All"

    # Build a GLB file name
    glbfile = os.path.join(
        target_dir,
        f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
    )

    # Convert predictions to GLB
    glbscene = predictions_to_glb(
        predictions,
        filter_by_frames=frame_filter,
        show_cam=show_cam,
        mask_black_bg=filter_black_bg,
        mask_white_bg=filter_white_bg,
        as_mesh=show_mesh,  # Use the show_mesh parameter
    )
    glbscene.export(file_obj=glbfile)

    # Cleanup
    del predictions
    gc.collect()
    torch.cuda.empty_cache()

    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds")
    log_msg = (
        f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
    )

    # Populate visualization tabs with processed data
    depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(
        processed_data
    )

    # Update view selectors based on available views
    depth_selector, normal_selector, measure_selector = update_view_selectors(
        processed_data
    )

    return (
        glbfile,
        log_msg,
        gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
        processed_data,
        depth_vis,
        normal_vis,
        measure_img,
        "",  # measure_text (empty initially)
        depth_selector,
        normal_selector,
        measure_selector,
    )


# -------------------------------------------------------------------------
# 5) Helper functions for UI resets + re-visualization
# -------------------------------------------------------------------------
def colorize_depth(depth_map, mask=None):
    """Convert depth map to colorized visualization with optional mask"""
    if depth_map is None:
        return None

    # Normalize depth to 0-1 range
    depth_normalized = depth_map.copy()
    valid_mask = depth_normalized > 0

    # Apply additional mask if provided (for background filtering)
    if mask is not None:
        valid_mask = valid_mask & mask

    if valid_mask.sum() > 0:
        valid_depths = depth_normalized[valid_mask]
        p5 = np.percentile(valid_depths, 5)
        p95 = np.percentile(valid_depths, 95)

        depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)

    # Apply colormap
    import matplotlib.pyplot as plt

    colormap = plt.cm.turbo_r
    colored = colormap(depth_normalized)
    colored = (colored[:, :, :3] * 255).astype(np.uint8)

    # Set invalid pixels to white
    colored[~valid_mask] = [255, 255, 255]

    return colored


def colorize_normal(normal_map, mask=None):
    """Convert normal map to colorized visualization with optional mask"""
    if normal_map is None:
        return None

    # Create a copy for modification
    normal_vis = normal_map.copy()

    # Apply mask if provided (set masked areas to [0, 0, 0] which becomes grey after normalization)
    if mask is not None:
        invalid_mask = ~mask
        normal_vis[invalid_mask] = [0, 0, 0]  # Set invalid areas to zero

    # Normalize normals to [0, 1] range for visualization
    normal_vis = (normal_vis + 1.0) / 2.0
    normal_vis = (normal_vis * 255).astype(np.uint8)

    return normal_vis


def process_predictions_for_visualization(
    predictions, views, high_level_config, filter_black_bg=False, filter_white_bg=False
):
    """Extract depth, normal, and 3D points from predictions for visualization"""
    processed_data = {}

    # Process each view
    for view_idx, view in enumerate(views):
        # Get image
        image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])

        # Get predicted points
        pred_pts3d = predictions["world_points"][view_idx]

        # Initialize data for this view
        view_data = {
            "image": image[0],
            "points3d": pred_pts3d,
            "depth": None,
            "normal": None,
            "mask": None,
        }

        # Start with the final mask from predictions
        mask = predictions["final_mask"][view_idx].copy()

        # Apply black background filtering if enabled
        if filter_black_bg:
            # Get the image colors (ensure they're in 0-255 range)
            view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
            # Filter out black background pixels (sum of RGB < 16)
            black_bg_mask = view_colors.sum(axis=2) >= 16
            mask = mask & black_bg_mask

        # Apply white background filtering if enabled
        if filter_white_bg:
            # Get the image colors (ensure they're in 0-255 range)
            view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
            # Filter out white background pixels (all RGB > 240)
            white_bg_mask = ~(
                (view_colors[:, :, 0] > 240)
                & (view_colors[:, :, 1] > 240)
                & (view_colors[:, :, 2] > 240)
            )
            mask = mask & white_bg_mask

        view_data["mask"] = mask
        view_data["depth"] = predictions["depth"][view_idx].squeeze()

        normals, _ = points_to_normals(pred_pts3d, mask=view_data["mask"])
        view_data["normal"] = normals

        processed_data[view_idx] = view_data

    return processed_data


def reset_measure(processed_data):
    """Reset measure points"""
    if processed_data is None or len(processed_data) == 0:
        return None, [], ""

    # Return the first view image
    first_view = list(processed_data.values())[0]
    return first_view["image"], [], ""


def measure(
    processed_data, measure_points, current_view_selector, event: gr.SelectData
):
    """Handle measurement on images"""
    try:
        print(f"Measure function called with selector: {current_view_selector}")

        if processed_data is None or len(processed_data) == 0:
            return None, [], "No data available"

        # Use the currently selected view instead of always using the first view
        try:
            current_view_index = int(current_view_selector.split()[1]) - 1
        except:
            current_view_index = 0

        print(f"Using view index: {current_view_index}")

        # Get view data safely
        if current_view_index < 0 or current_view_index >= len(processed_data):
            current_view_index = 0

        view_keys = list(processed_data.keys())
        current_view = processed_data[view_keys[current_view_index]]

        if current_view is None:
            return None, [], "No view data available"

        point2d = event.index[0], event.index[1]
        print(f"Clicked point: {point2d}")

        # Check if the clicked point is in a masked area (prevent interaction)
        if (
            current_view["mask"] is not None
            and 0 <= point2d[1] < current_view["mask"].shape[0]
            and 0 <= point2d[0] < current_view["mask"].shape[1]
        ):
            # Check if the point is in a masked (invalid) area
            if not current_view["mask"][point2d[1], point2d[0]]:
                print(f"Clicked point {point2d} is in masked area, ignoring click")
                # Always return image with mask overlay
                masked_image, _ = update_measure_view(
                    processed_data, current_view_index
                )
                return (
                    masked_image,
                    measure_points,
                    '<span style="color: red; font-weight: bold;">Cannot measure on masked areas (shown in grey)</span>',
                )

        measure_points.append(point2d)

        # Get image with mask overlay and ensure it's valid
        image, _ = update_measure_view(processed_data, current_view_index)
        if image is None:
            return None, [], "No image available"

        image = image.copy()
        points3d = current_view["points3d"]

        # Ensure image is in uint8 format for proper cv2 operations
        try:
            if image.dtype != np.uint8:
                if image.max() <= 1.0:
                    # Image is in [0, 1] range, convert to [0, 255]
                    image = (image * 255).astype(np.uint8)
                else:
                    # Image is already in [0, 255] range
                    image = image.astype(np.uint8)
        except Exception as e:
            print(f"Image conversion error: {e}")
            return None, [], f"Image conversion error: {e}"

        # Draw circles for points
        try:
            for p in measure_points:
                if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
                    image = cv2.circle(
                        image, p, radius=5, color=(255, 0, 0), thickness=2
                    )
        except Exception as e:
            print(f"Drawing error: {e}")
            return None, [], f"Drawing error: {e}"

        depth_text = ""
        try:
            for i, p in enumerate(measure_points):
                if (
                    current_view["depth"] is not None
                    and 0 <= p[1] < current_view["depth"].shape[0]
                    and 0 <= p[0] < current_view["depth"].shape[1]
                ):
                    d = current_view["depth"][p[1], p[0]]
                    depth_text += f"- **P{i + 1} depth: {d:.2f}m.**\n"
                else:
                    # Use Z coordinate of 3D points if depth not available
                    if (
                        points3d is not None
                        and 0 <= p[1] < points3d.shape[0]
                        and 0 <= p[0] < points3d.shape[1]
                    ):
                        z = points3d[p[1], p[0], 2]
                        depth_text += f"- **P{i + 1} Z-coord: {z:.2f}m.**\n"
        except Exception as e:
            print(f"Depth text error: {e}")
            depth_text = f"Error computing depth: {e}\n"

        if len(measure_points) == 2:
            try:
                point1, point2 = measure_points
                # Draw line
                if (
                    0 <= point1[0] < image.shape[1]
                    and 0 <= point1[1] < image.shape[0]
                    and 0 <= point2[0] < image.shape[1]
                    and 0 <= point2[1] < image.shape[0]
                ):
                    image = cv2.line(
                        image, point1, point2, color=(255, 0, 0), thickness=2
                    )

                # Compute 3D distance
                distance_text = "- **Distance: Unable to compute**"
                if (
                    points3d is not None
                    and 0 <= point1[1] < points3d.shape[0]
                    and 0 <= point1[0] < points3d.shape[1]
                    and 0 <= point2[1] < points3d.shape[0]
                    and 0 <= point2[0] < points3d.shape[1]
                ):
                    try:
                        p1_3d = points3d[point1[1], point1[0]]
                        p2_3d = points3d[point2[1], point2[0]]
                        distance = np.linalg.norm(p1_3d - p2_3d)
                        distance_text = f"- **Distance: {distance:.2f}m**"
                    except Exception as e:
                        print(f"Distance computation error: {e}")
                        distance_text = f"- **Distance computation error: {e}**"

                measure_points = []
                text = depth_text + distance_text
                print(f"Measurement complete: {text}")
                return [image, measure_points, text]
            except Exception as e:
                print(f"Final measurement error: {e}")
                return None, [], f"Measurement error: {e}"
        else:
            print(f"Single point measurement: {depth_text}")
            return [image, measure_points, depth_text]

    except Exception as e:
        print(f"Overall measure function error: {e}")
        return None, [], f"Measure function error: {e}"


def clear_fields():
    """
    Clears the 3D viewer, the stored target_dir, and empties the gallery.
    """
    return None


def update_log():
    """
    Display a quick log message while waiting.
    """
    return "Loading and Reconstructing..."


def update_visualization(
    target_dir,
    frame_filter,
    show_cam,
    is_example,
    filter_black_bg=False,
    filter_white_bg=False,
    show_mesh=True,
):
    """
    Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
    and return it for the 3D viewer. If is_example == "True", skip.
    """

    # If it's an example click, skip as requested
    if is_example == "True":
        return (
            gr.update(),
            "No reconstruction available. Please click the Reconstruct button first.",
        )

    if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
        return (
            gr.update(),
            "No reconstruction available. Please click the Reconstruct button first.",
        )

    predictions_path = os.path.join(target_dir, "predictions.npz")
    if not os.path.exists(predictions_path):
        return (
            gr.update(),
            f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
        )

    loaded = np.load(predictions_path, allow_pickle=True)
    predictions = {key: loaded[key] for key in loaded.keys()}

    glbfile = os.path.join(
        target_dir,
        f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
    )

    if not os.path.exists(glbfile):
        glbscene = predictions_to_glb(
            predictions,
            filter_by_frames=frame_filter,
            show_cam=show_cam,
            mask_black_bg=filter_black_bg,
            mask_white_bg=filter_white_bg,
            as_mesh=show_mesh,
        )
        glbscene.export(file_obj=glbfile)

    return (
        glbfile,
        "Visualization updated.",
    )


def update_all_views_on_filter_change(
    target_dir,
    filter_black_bg,
    filter_white_bg,
    processed_data,
    depth_view_selector,
    normal_view_selector,
    measure_view_selector,
):
    """
    Update all individual view tabs when background filtering checkboxes change.
    This regenerates the processed data with new filtering and updates all views.
    """
    # Check if we have a valid target directory and predictions
    if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
        return processed_data, None, None, None, []

    predictions_path = os.path.join(target_dir, "predictions.npz")
    if not os.path.exists(predictions_path):
        return processed_data, None, None, None, []

    try:
        # Load the original predictions and views
        loaded = np.load(predictions_path, allow_pickle=True)
        predictions = {key: loaded[key] for key in loaded.keys()}

        # Load images using MapAnything's load_images function
        image_folder_path = os.path.join(target_dir, "images")
        views = load_images(image_folder_path)

        # Regenerate processed data with new filtering settings
        new_processed_data = process_predictions_for_visualization(
            predictions, views, high_level_config, filter_black_bg, filter_white_bg
        )

        # Get current view indices
        try:
            depth_view_idx = (
                int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
            )
        except:
            depth_view_idx = 0

        try:
            normal_view_idx = (
                int(normal_view_selector.split()[1]) - 1 if normal_view_selector else 0
            )
        except:
            normal_view_idx = 0

        try:
            measure_view_idx = (
                int(measure_view_selector.split()[1]) - 1
                if measure_view_selector
                else 0
            )
        except:
            measure_view_idx = 0

        # Update all views with new filtered data
        depth_vis = update_depth_view(new_processed_data, depth_view_idx)
        normal_vis = update_normal_view(new_processed_data, normal_view_idx)
        measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)

        return new_processed_data, depth_vis, normal_vis, measure_img, []

    except Exception as e:
        print(f"Error updating views on filter change: {e}")
        return processed_data, None, None, None, []


# -------------------------------------------------------------------------
# Example scene functions
# -------------------------------------------------------------------------
def get_scene_info(examples_dir):
    """Get information about scenes in the examples directory"""
    import glob

    scenes = []
    if not os.path.exists(examples_dir):
        return scenes

    for scene_folder in sorted(os.listdir(examples_dir)):
        scene_path = os.path.join(examples_dir, scene_folder)
        if os.path.isdir(scene_path):
            # Find all image files in the scene folder
            image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
            image_files = []
            for ext in image_extensions:
                image_files.extend(glob.glob(os.path.join(scene_path, ext)))
                image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))

            if image_files:
                # Sort images and get the first one for thumbnail
                image_files = sorted(image_files)
                first_image = image_files[0]
                num_images = len(image_files)

                scenes.append(
                    {
                        "name": scene_folder,
                        "path": scene_path,
                        "thumbnail": first_image,
                        "num_images": num_images,
                        "image_files": image_files,
                    }
                )

    return scenes


def load_example_scene(scene_name, examples_dir="examples"):
    """Load a scene from examples directory"""
    scenes = get_scene_info(examples_dir)

    # Find the selected scene
    selected_scene = None
    for scene in scenes:
        if scene["name"] == scene_name:
            selected_scene = scene
            break

    if selected_scene is None:
        return None, None, None, "Scene not found"

    # Create file-like objects for the unified upload system
    # Convert image file paths to the format expected by unified_upload
    file_objects = []
    for image_path in selected_scene["image_files"]:
        file_objects.append(image_path)

    # Create target directory and copy images using the unified upload system
    target_dir, image_paths = handle_uploads(file_objects, 1.0)

    return (
        None,  # Clear reconstruction output
        target_dir,  # Set target directory
        image_paths,  # Set gallery
        f"Loaded scene '{scene_name}' with {selected_scene['num_images']} images. Click 'Reconstruct' to begin 3D processing.",
    )


# -------------------------------------------------------------------------
# 6) Build Gradio UI
# -------------------------------------------------------------------------
theme = get_gradio_theme()

with gr.Blocks(theme=theme, css=GRADIO_CSS) as demo:
    # State variables for the tabbed interface
    is_example = gr.Textbox(label="is_example", visible=False, value="None")
    num_images = gr.Textbox(label="num_images", visible=False, value="None")
    processed_data_state = gr.State(value=None)
    measure_points_state = gr.State(value=[])
    current_view_index = gr.State(value=0)  # Track current view index for navigation

    gr.HTML(get_header_html(get_logo_base64()))
    gr.HTML(get_description_html())

    target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")

    with gr.Row():
        with gr.Column(scale=2):
            # Unified upload component for both videos and images
            unified_upload = gr.File(
                file_count="multiple",
                label="Upload Video or Images",
                interactive=True,
                file_types=["image", "video"],
            )
            with gr.Row():
                s_time_interval = gr.Slider(
                    minimum=0.1,
                    maximum=5.0,
                    value=1.0,
                    step=0.1,
                    label="Video sample time interval (take a sample every x sec.)",
                    interactive=True,
                    visible=True,
                    scale=3,
                )
                resample_btn = gr.Button(
                    "Resample Video",
                    visible=False,
                    variant="secondary",
                    scale=1,
                )

            image_gallery = gr.Gallery(
                label="Preview",
                columns=4,
                height="300px",
                show_download_button=True,
                object_fit="contain",
                preview=True,
            )

            clear_uploads_btn = gr.ClearButton(
                [unified_upload, image_gallery],
                value="Clear Uploads",
                variant="secondary",
                size="sm",
            )

        with gr.Column(scale=4):
            with gr.Column():
                gr.Markdown(
                    "**Metric 3D Reconstruction (Point Cloud and Camera Poses)**"
                )
                log_output = gr.Markdown(
                    "Please upload a video or images, then click Reconstruct.",
                    elem_classes=["custom-log"],
                )

                # Add tabbed interface similar to MoGe
                with gr.Tabs():
                    with gr.Tab("3D View"):
                        reconstruction_output = gr.Model3D(
                            height=520,
                            zoom_speed=0.5,
                            pan_speed=0.5,
                            clear_color=[0.0, 0.0, 0.0, 0.0],
                            key="persistent_3d_viewer",
                            elem_id="reconstruction_3d_viewer",
                        )
                    with gr.Tab("Depth"):
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_depth_btn = gr.Button("◀ Previous", size="sm", scale=1)
                            depth_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_depth_btn = gr.Button("Next ▶", size="sm", scale=1)
                        depth_map = gr.Image(
                            type="numpy",
                            label="Colorized Depth Map",
                            format="png",
                            interactive=False,
                        )
                    with gr.Tab("Normal"):
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_normal_btn = gr.Button(
                                "◀ Previous", size="sm", scale=1
                            )
                            normal_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_normal_btn = gr.Button("Next ▶", size="sm", scale=1)
                        normal_map = gr.Image(
                            type="numpy",
                            label="Normal Map",
                            format="png",
                            interactive=False,
                        )
                    with gr.Tab("Measure"):
                        gr.Markdown(MEASURE_INSTRUCTIONS_HTML)
                        with gr.Row(elem_classes=["navigation-row"]):
                            prev_measure_btn = gr.Button(
                                "◀ Previous", size="sm", scale=1
                            )
                            measure_view_selector = gr.Dropdown(
                                choices=["View 1"],
                                value="View 1",
                                label="Select View",
                                scale=2,
                                interactive=True,
                                allow_custom_value=True,
                            )
                            next_measure_btn = gr.Button("Next ▶", size="sm", scale=1)
                        measure_image = gr.Image(
                            type="numpy",
                            show_label=False,
                            format="webp",
                            interactive=False,
                            sources=[],
                        )
                        gr.Markdown(
                            "**Note:** Light-grey areas indicate regions with no depth information where measurements cannot be taken."
                        )
                        measure_text = gr.Markdown("")

            with gr.Row():
                submit_btn = gr.Button("Reconstruct", scale=1, variant="primary")
                clear_btn = gr.ClearButton(
                    [
                        unified_upload,
                        reconstruction_output,
                        log_output,
                        target_dir_output,
                        image_gallery,
                    ],
                    scale=1,
                )

            with gr.Row():
                frame_filter = gr.Dropdown(
                    choices=["All"], value="All", label="Show Points from Frame"
                )
                with gr.Column():
                    gr.Markdown("### Pointcloud Options: (live updates)")
                    show_cam = gr.Checkbox(label="Show Camera", value=True)
                    show_mesh = gr.Checkbox(label="Show Mesh", value=True)
                    filter_black_bg = gr.Checkbox(
                        label="Filter Black Background", value=False
                    )
                    filter_white_bg = gr.Checkbox(
                        label="Filter White Background", value=False
                    )
                    gr.Markdown("### Reconstruction Options: (updated on next run)")
                    apply_mask_checkbox = gr.Checkbox(
                        label="Apply mask for predicted ambiguous depth classes & edges",
                        value=True,
                    )
    # ---------------------- Example Scenes Section ----------------------
    gr.Markdown("## Example Scenes (lists all scenes in the examples folder)")
    gr.Markdown("Click any thumbnail to load the scene for reconstruction.")

    # Get scene information
    scenes = get_scene_info("examples")

    # Create thumbnail grid (4 columns, N rows)
    if scenes:
        for i in range(0, len(scenes), 4):  # Process 4 scenes per row
            with gr.Row():
                for j in range(4):
                    scene_idx = i + j
                    if scene_idx < len(scenes):
                        scene = scenes[scene_idx]
                        with gr.Column(scale=1, elem_classes=["clickable-thumbnail"]):
                            # Clickable thumbnail
                            scene_img = gr.Image(
                                value=scene["thumbnail"],
                                height=150,
                                interactive=False,
                                show_label=False,
                                elem_id=f"scene_thumb_{scene['name']}",
                                sources=[],
                            )

                            # Scene name and image count as text below thumbnail
                            gr.Markdown(
                                f"**{scene['name']}** \n {scene['num_images']} images",
                                elem_classes=["scene-info"],
                            )

                            # Connect thumbnail click to load scene
                            scene_img.select(
                                fn=lambda name=scene["name"]: load_example_scene(name),
                                outputs=[
                                    reconstruction_output,
                                    target_dir_output,
                                    image_gallery,
                                    log_output,
                                ],
                            )
                    else:
                        # Empty column to maintain grid structure
                        with gr.Column(scale=1):
                            pass

    # -------------------------------------------------------------------------
    # "Reconstruct" button logic:
    #  - Clear fields
    #  - Update log
    #  - gradio_demo(...) with the existing target_dir
    #  - Then set is_example = "False"
    # -------------------------------------------------------------------------
    submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then(
        fn=update_log, inputs=[], outputs=[log_output]
    ).then(
        fn=gradio_demo,
        inputs=[
            target_dir_output,
            frame_filter,
            show_cam,
            filter_black_bg,
            filter_white_bg,
            apply_mask_checkbox,
            show_mesh,
        ],
        outputs=[
            reconstruction_output,
            log_output,
            frame_filter,
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_text,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
    ).then(
        fn=lambda: "False",
        inputs=[],
        outputs=[is_example],  # set is_example to "False"
    )

    # -------------------------------------------------------------------------
    # Real-time Visualization Updates
    # -------------------------------------------------------------------------
    frame_filter.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    )
    show_cam.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
        ],
        [reconstruction_output, log_output],
    )
    filter_black_bg.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
        ],
        [reconstruction_output, log_output],
    ).then(
        fn=update_all_views_on_filter_change,
        inputs=[
            target_dir_output,
            filter_black_bg,
            filter_white_bg,
            processed_data_state,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
        outputs=[
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_points_state,
        ],
    )
    filter_white_bg.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    ).then(
        fn=update_all_views_on_filter_change,
        inputs=[
            target_dir_output,
            filter_black_bg,
            filter_white_bg,
            processed_data_state,
            depth_view_selector,
            normal_view_selector,
            measure_view_selector,
        ],
        outputs=[
            processed_data_state,
            depth_map,
            normal_map,
            measure_image,
            measure_points_state,
        ],
    )

    show_mesh.change(
        update_visualization,
        [
            target_dir_output,
            frame_filter,
            show_cam,
            is_example,
            filter_black_bg,
            filter_white_bg,
            show_mesh,
        ],
        [reconstruction_output, log_output],
    )

    # -------------------------------------------------------------------------
    # Auto-update gallery whenever user uploads or changes their files
    # -------------------------------------------------------------------------
    def update_gallery_on_unified_upload(files, interval):
        if not files:
            return None, None, None
        target_dir, image_paths = handle_uploads(files, interval)
        return (
            target_dir,
            image_paths,
            "Upload complete. Click 'Reconstruct' to begin 3D processing.",
        )

    def show_resample_button(files):
        """Show the resample button only if there are uploaded files containing videos"""
        if not files:
            return gr.update(visible=False)

        # Check if any uploaded files are videos
        video_extensions = [
            ".mp4",
            ".avi",
            ".mov",
            ".mkv",
            ".wmv",
            ".flv",
            ".webm",
            ".m4v",
            ".3gp",
        ]
        has_video = False

        for file_data in files:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = str(file_data)

            file_ext = os.path.splitext(file_path)[1].lower()
            if file_ext in video_extensions:
                has_video = True
                break

        return gr.update(visible=has_video)

    def hide_resample_button():
        """Hide the resample button after use"""
        return gr.update(visible=False)

    def resample_video_with_new_interval(files, new_interval, current_target_dir):
        """Resample video with new slider value"""
        if not files:
            return (
                current_target_dir,
                None,
                "No files to resample.",
                gr.update(visible=False),
            )

        # Check if we have videos to resample
        video_extensions = [
            ".mp4",
            ".avi",
            ".mov",
            ".mkv",
            ".wmv",
            ".flv",
            ".webm",
            ".m4v",
            ".3gp",
        ]
        has_video = any(
            os.path.splitext(
                str(file_data["name"] if isinstance(file_data, dict) else file_data)
            )[1].lower()
            in video_extensions
            for file_data in files
        )

        if not has_video:
            return (
                current_target_dir,
                None,
                "No videos found to resample.",
                gr.update(visible=False),
            )

        # Clean up old target directory if it exists
        if (
            current_target_dir
            and current_target_dir != "None"
            and os.path.exists(current_target_dir)
        ):
            shutil.rmtree(current_target_dir)

        # Process files with new interval
        target_dir, image_paths = handle_uploads(files, new_interval)

        return (
            target_dir,
            image_paths,
            f"Video resampled with {new_interval}s interval. Click 'Reconstruct' to begin 3D processing.",
            gr.update(visible=False),
        )

    unified_upload.change(
        fn=update_gallery_on_unified_upload,
        inputs=[unified_upload, s_time_interval],
        outputs=[target_dir_output, image_gallery, log_output],
    ).then(
        fn=show_resample_button,
        inputs=[unified_upload],
        outputs=[resample_btn],
    )

    # Show resample button when slider changes (only if files are uploaded)
    s_time_interval.change(
        fn=show_resample_button,
        inputs=[unified_upload],
        outputs=[resample_btn],
    )

    # Handle resample button click
    resample_btn.click(
        fn=resample_video_with_new_interval,
        inputs=[unified_upload, s_time_interval, target_dir_output],
        outputs=[target_dir_output, image_gallery, log_output, resample_btn],
    )

    # -------------------------------------------------------------------------
    # Measure tab functionality
    # -------------------------------------------------------------------------
    measure_image.select(
        fn=measure,
        inputs=[processed_data_state, measure_points_state, measure_view_selector],
        outputs=[measure_image, measure_points_state, measure_text],
    )

    # -------------------------------------------------------------------------
    # Navigation functionality for Depth, Normal, and Measure tabs
    # -------------------------------------------------------------------------

    # Depth tab navigation
    prev_depth_btn.click(
        fn=lambda processed_data, current_selector: navigate_depth_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_view_selector, depth_map],
    )

    next_depth_btn.click(
        fn=lambda processed_data, current_selector: navigate_depth_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_view_selector, depth_map],
    )

    depth_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_depth_view(
                processed_data,
                int(selector_value.split()[1]) - 1,
            )
            if selector_value
            else None
        ),
        inputs=[processed_data_state, depth_view_selector],
        outputs=[depth_map],
    )

    # Normal tab navigation
    prev_normal_btn.click(
        fn=lambda processed_data, current_selector: navigate_normal_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_view_selector, normal_map],
    )

    next_normal_btn.click(
        fn=lambda processed_data, current_selector: navigate_normal_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_view_selector, normal_map],
    )

    normal_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_normal_view(
                processed_data,
                int(selector_value.split()[1]) - 1,
            )
            if selector_value
            else None
        ),
        inputs=[processed_data_state, normal_view_selector],
        outputs=[normal_map],
    )

    # Measure tab navigation
    prev_measure_btn.click(
        fn=lambda processed_data, current_selector: navigate_measure_view(
            processed_data, current_selector, -1
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_view_selector, measure_image, measure_points_state],
    )

    next_measure_btn.click(
        fn=lambda processed_data, current_selector: navigate_measure_view(
            processed_data, current_selector, 1
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_view_selector, measure_image, measure_points_state],
    )

    measure_view_selector.change(
        fn=lambda processed_data, selector_value: (
            update_measure_view(processed_data, int(selector_value.split()[1]) - 1)
            if selector_value
            else (None, [])
        ),
        inputs=[processed_data_state, measure_view_selector],
        outputs=[measure_image, measure_points_state],
    )

    # -------------------------------------------------------------------------
    # Acknowledgement section
    # -------------------------------------------------------------------------
    gr.HTML(get_acknowledgements_html())

    demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)