""" Training Code for MapAnything. References: DUSt3R: https://github.com/naver/dust3r """ import datetime import json import math import os import pickle import sys import time from collections import defaultdict from pathlib import Path from typing import Sized import numpy as np import torch import torch.backends.cudnn as cudnn from torch.utils.tensorboard import SummaryWriter import mapanything.utils.train_tools as train_tools from mapanything.datasets import get_test_data_loader, get_train_data_loader from mapanything.models import init_model from mapanything.train.losses import * # noqa from mapanything.utils.inference import loss_of_one_batch_multi_view from mapanything.utils.train_tools import NativeScalerWithGradNormCount as NativeScaler # Enable TF32 precision if supported (for GPU >= Ampere and PyTorch >= 1.12) if hasattr(torch.backends.cuda, "matmul") and hasattr( torch.backends.cuda.matmul, "allow_tf32" ): torch.backends.cuda.matmul.allow_tf32 = True def train(args): """ Main training function that handles the entire training process. This function initializes the distributed training environment, sets up datasets, initializes the model, optimizer, and loss functions, and manages the training and evaluation loop across multiple epochs. In this training, an epoch is just a chunk of the entire dataset. Args: args: Configuration object containing all training parameters including dataset configs, model configs, training parameters, and loss functions. """ # Initialize distributed training if required train_tools.init_distributed_mode(args.distributed) global_rank = train_tools.get_rank() world_size = train_tools.get_world_size() # noqa # Init output directory and device print("output_dir: " + args.output_dir) if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(", ", ",\n")) device = "cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device) # Fix the seed seed = args.train_params.seed + train_tools.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = not args.train_params.disable_cudnn_benchmark # Datasets and Dataloaders print("Building train dataset {:s}".format(args.dataset.train_dataset)) data_loader_train = build_dataset( dataset=args.dataset.train_dataset, num_workers=args.dataset.num_workers, test=False, max_num_of_imgs_per_gpu=args.train_params.max_num_of_imgs_per_gpu, ) print("Building test dataset {:s}".format(args.dataset.test_dataset)) test_batch_size = 2 * ( args.train_params.max_num_of_imgs_per_gpu // args.dataset.num_views ) # Since we don't have any backward overhead data_loader_test = { dataset.split("(")[0]: build_dataset( dataset=dataset, num_workers=args.dataset.num_workers, test=True, batch_size=test_batch_size, ) for dataset in args.dataset.test_dataset.split("+") if "(" in dataset } # Load Model if global_rank == 0: model = init_model( args.model.model_str, args.model.model_config, torch_hub_force_reload=args.model.torch_hub_force_reload, ) if torch.distributed.is_initialized(): torch.distributed.barrier() # Make sure the model is initialized before proceeding if global_rank != 0: model = init_model( args.model.model_str, args.model.model_config, torch_hub_force_reload=False ) model.to(device) # Move model to device model_without_ddp = model print("Model = %s" % str(model_without_ddp)) # Criterion print(f">> Creating train criterion = {args.loss.train_criterion}") train_criterion = eval(args.loss.train_criterion).to(device) print( f">> Creating test criterion = {args.loss.test_criterion or args.loss.train_criterion}" ) test_criterion = eval(args.loss.test_criterion or args.loss.train_criterion).to( device ) # Load pretrained model if provided if args.model.pretrained: print("Loading pretrained: ", args.model.pretrained) ckpt = torch.load( args.model.pretrained, map_location=device, weights_only=False ) print(model.load_state_dict(ckpt["model"], strict=False)) del ckpt # in case it occupies memory # Init model for DDP training if args.distributed.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.distributed.gpu], find_unused_parameters=True, static_graph=False, ) model_without_ddp = model.module # Optimizer and loss scaler for gradient accumulation # Following timm: set wd as 0 for bias and norm layers param_groups, param_groups_name_to_idx_map, param_groups_idx_to_name_map = ( train_tools.get_parameter_groups( model_without_ddp, args.train_params.lr, args.train_params.weight_decay, submodule_configs=args.train_params.submodule_configs, warn_not_in_submodule=args.train_params.warn_not_in_submodule, ) ) optimizer = torch.optim.AdamW( param_groups, lr=args.train_params.lr, betas=(0.9, 0.95) ) print(optimizer) loss_scaler = NativeScaler() def write_log_stats(epoch, train_stats, test_stats): """ Writes training and testing statistics to log files and TensorBoard. Args: epoch: Current epoch number. train_stats: Dictionary containing training metrics. test_stats: Dictionary containing testing metrics for each test dataset. """ if train_tools.is_main_process(): if log_writer is not None: log_writer.flush() log_stats = dict( epoch=epoch, **{f"train_{k}": v for k, v in train_stats.items()} ) for test_name in data_loader_test: if test_name not in test_stats: continue log_stats.update( {test_name + "_" + k: v for k, v in test_stats[test_name].items()} ) with open( os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" ) as f: f.write(json.dumps(log_stats) + "\n") def save_model(epoch, fname, best_so_far): """ Saves model checkpoint to disk. Args: epoch: Current epoch number. fname: Filename or identifier for the checkpoint. best_so_far: Best validation metric achieved so far. """ train_tools.save_model( args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far, ) # Resume from a checkpoint if needed last_ckpt_fname = os.path.join(args.output_dir, "checkpoint-last.pth") if args.train_params.resume and os.path.isfile(last_ckpt_fname): args.train_params.resume_ckpt = last_ckpt_fname else: args.train_params.resume_ckpt = None best_so_far = train_tools.load_model( train_args=args.train_params, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, ) if best_so_far is None: best_so_far = float("inf") if global_rank == 0 and args.output_dir is not None: log_writer = SummaryWriter(log_dir=args.output_dir) else: log_writer = None print(f"Start training for {args.train_params.epochs} epochs") start_time = time.time() train_stats = test_stats = {} for epoch in range(args.train_params.start_epoch, args.train_params.epochs + 1): # Save immediately the last checkpoint if epoch > args.train_params.start_epoch: if ( args.train_params.save_freq and epoch % args.train_params.save_freq == 0 or epoch == args.train_params.epochs ): save_model(epoch - 1, "last", best_so_far) # Test on multiple datasets new_best = False test_stats = {} if ( args.train_params.eval_freq > 0 and epoch % args.train_params.eval_freq == 0 and epoch > 0 ): for test_name, testset in data_loader_test.items(): print(f"Testing on {test_name} ...") stats = test_one_epoch( model, test_criterion, testset, device, epoch, log_writer=log_writer, args=args, prefix=test_name, ) test_stats[test_name] = stats # Calculate average test loss median avg_test_loss_med = np.mean( [stats["loss_med"] for stats in test_stats.values()] ) test_stats["Average Test Loss Median"] = avg_test_loss_med # Save best if avg_test_loss_med < best_so_far: best_so_far = avg_test_loss_med new_best = True # Save more stuff write_log_stats(epoch, train_stats, test_stats) if epoch > args.train_params.start_epoch: if args.train_params.keep_freq and epoch % args.train_params.keep_freq == 0: save_model(epoch - 1, str(epoch), best_so_far) if new_best: save_model(epoch - 1, "best", best_so_far) if epoch >= args.train_params.epochs: break # exit after writing last test to disk # Train train_stats = train_one_epoch( model, train_criterion, data_loader_train, optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args, param_groups_name_to_idx_map=param_groups_name_to_idx_map, param_groups_idx_to_name_map=param_groups_idx_to_name_map, model_without_ddp=model_without_ddp, ) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) save_final_model( args, args.train_params.epochs, model_without_ddp, best_so_far=best_so_far ) def save_final_model(args, epoch, model_without_ddp, best_so_far=None): """ Saves the final model checkpoint after training completion. Args: args: Configuration object containing output directory information. epoch: Current epoch number. model_without_ddp: Model state dictionary or model instance without DistributedDataParallel wrapper. best_so_far: Optional; Best validation metric achieved during training. """ output_dir = Path(args.output_dir) checkpoint_path = output_dir / "checkpoint-final.pth" to_save = { "args": args, "model": model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict(), "epoch": epoch, } if best_so_far is not None: to_save["best_so_far"] = best_so_far print(f">> Saving model to {checkpoint_path} ...") train_tools.save_on_master(to_save, checkpoint_path) def build_dataset( dataset, num_workers, test, batch_size=None, max_num_of_imgs_per_gpu=None ): """ Builds data loaders for training or testing. Args: dataset: Dataset specification string. num_workers: Number of worker processes for data loading. test: Boolean flag indicating whether this is a test dataset. batch_size: Number of samples per batch. Defaults to None. Used only for testing. max_num_of_imgs_per_gpu: Maximum number of images per GPU. Defaults to None. Used only for training. Returns: DataLoader: PyTorch DataLoader configured for the specified dataset. """ split = ["Train", "Test"][test] print(f"Building {split} Data loader for dataset: ", dataset) if test: assert batch_size is not None, ( "batch_size must be specified for testing dataloader" ) loader = get_test_data_loader( dataset=dataset, batch_size=batch_size, num_workers=num_workers, pin_mem=True, shuffle=False, drop_last=False, ) else: assert max_num_of_imgs_per_gpu is not None, ( "max_num_of_imgs_per_gpu must be specified for training dataloader" ) loader = get_train_data_loader( dataset=dataset, max_num_of_imgs_per_gpu=max_num_of_imgs_per_gpu, num_workers=num_workers, pin_mem=True, shuffle=True, drop_last=True, ) print(f"{split} dataset length: ", len(loader)) return loader def train_one_epoch( model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Sized, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, args, log_writer=None, param_groups_name_to_idx_map=None, param_groups_idx_to_name_map=None, model_without_ddp=None, ): """ Trains the model for one epoch. Epoch is just a chunk of the entire dataset. This function handles the training loop for a single epoch, including forward/backward passes, gradient accumulation, learning rate scheduling, and logging metrics. Args: model: The neural network model to train. criterion: Loss function to optimize. data_loader: DataLoader providing the training data. optimizer: Optimizer for updating model parameters. device: Device to run training on (CPU or GPU). epoch: Current epoch number. loss_scaler: Scaler for gradient accumulation and mixed precision training. args: Configuration object containing training parameters. log_writer: Optional; TensorBoard SummaryWriter for logging. param_groups_name_to_idx_map: Mapping from parameter group names to indices. param_groups_idx_to_name_map: Mapping from parameter group indices to names. model_without_ddp: Model without DistributedDataParallel wrapper for debugging. Returns: dict: Dictionary containing training metrics averaged over the epoch. """ model.train(True) metric_logger = train_tools.MetricLogger(delimiter=" ") for submodule_name in param_groups_name_to_idx_map: lr_name = f"lr_{submodule_name}" if submodule_name != "default" else "lr" metric_logger.add_meter( lr_name, train_tools.SmoothedValue(window_size=1, fmt="{value:.6f}") ) header = "Epoch: [{}]".format(epoch) accum_iter = args.train_params.accum_iter if log_writer is not None: print("log_dir: {}".format(log_writer.log_dir)) if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"): data_loader.dataset.set_epoch(epoch) if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"): data_loader.sampler.set_epoch(epoch) if hasattr(data_loader, "batch_sampler") and hasattr( data_loader.batch_sampler, "set_epoch" ): data_loader.batch_sampler.set_epoch(epoch) optimizer.zero_grad() for data_iter_step, batch in enumerate( metric_logger.log_every(data_loader, args.train_params.print_freq, header) ): n_views = len(batch) epoch_f = epoch + data_iter_step / len(data_loader) # We use a per iteration (instead of per epoch) lr scheduler if data_iter_step % accum_iter == 0: train_tools.adjust_learning_rate( optimizer, epoch_f, args.train_params, param_groups_idx_to_name_map, args.train_params.submodule_configs, ) loss_tuple = loss_of_one_batch_multi_view( batch, model, criterion, device, use_amp=bool(args.train_params.amp), amp_dtype=args.train_params.amp_dtype, ret="loss", ) loss, loss_details = loss_tuple # criterion returns two values if n_views > 2: loss = loss * ( 2 / n_views ) # scale the loss relative to the number of views (base is 2 views) loss_value = float(loss) if not math.isfinite(loss_value) or (loss_value > 1000): print("Loss is {}, stopping training".format(loss_value), force=True) print(f"Loss Details: {loss_details}", force=True) print(f"Epoch: {epoch}, Data Iteration: {data_iter_step}", force=True) # Save the current batch to the output folder for further inspection for view_idx, view in enumerate(batch): view_cpu = {} for k, v in view.items(): view_cpu[k] = v.cpu() if isinstance(v, torch.Tensor) else v with open( os.path.join(args.output_dir, f"batch_view_{view_idx}.pkl"), "wb" ) as f: pickle.dump(view_cpu, f) # Save the model to the output folder for further inspection checkpoint_debug_path = os.path.join( args.output_dir, "checkpoint-debug.pth" ) to_save_debug = { "args": args, "model": ( model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict() ), "epoch": epoch, "data_iter_step": data_iter_step, } torch.save(to_save_debug, checkpoint_debug_path) print(f"Saved debugging material to {args.output_dir}", force=True) sys.exit(1) # Scale the loss by the number of gradient accumulation iterations loss /= accum_iter # Compute the scaled gradients (also clip the gradients to max norm of 1) gradient_norm = loss_scaler( loss, optimizer, parameters=model.parameters(), update_grad=(data_iter_step + 1) % accum_iter == 0, clip_grad=1.0, ) # Zero out the gradients to prepare for the next iteration of gradient descent if (data_iter_step + 1) % accum_iter == 0: optimizer.zero_grad() del loss del batch metric_logger.update(epoch=epoch_f) for submodule_name in param_groups_name_to_idx_map: lr_name = f"lr_{submodule_name}" if submodule_name != "default" else "lr" log_lr = optimizer.param_groups[ param_groups_name_to_idx_map[submodule_name][0] ]["lr"] metric_logger.meters[lr_name].update(log_lr) metric_logger.update(loss=loss_value, **loss_details) if (data_iter_step + 1) % accum_iter == 0 and ( (data_iter_step + 1) % (accum_iter * args.train_params.print_freq) ) == 0: loss_value_reduce = train_tools.all_reduce_mean( loss_value ) # MUST BE EXECUTED BY ALL NODES if log_writer is None: continue """ We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. """ epoch_1000x = int(epoch_f * 1000) log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x) if gradient_norm is not None: log_writer.add_scalar("train_grad_norm", gradient_norm, epoch_1000x) for submodule_name in param_groups_name_to_idx_map: lr_name = ( f"train_lr_{submodule_name}" if submodule_name != "default" else "train_lr" ) log_lr = optimizer.param_groups[ param_groups_name_to_idx_map[submodule_name][0] ]["lr"] log_writer.add_scalar(lr_name, log_lr, epoch_1000x) log_writer.add_scalar("train_iter", epoch_1000x, epoch_1000x) for name, val in loss_details.items(): log_writer.add_scalar("train_" + name, val, epoch_1000x) # # Gather the stats from all processes # metric_logger.synchronize_between_processes() # print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def test_one_epoch( model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Sized, device: torch.device, epoch: int, args, log_writer=None, prefix="test", ): """ Evaluates the model on a test dataset for one epoch. Epoch is just a chunk of the entire dataset. This function runs evaluation on the test dataset without computing gradients, and collects metrics for model performance assessment. Args: model: The neural network model to evaluate. criterion: Loss function for evaluation. data_loader: DataLoader providing the test data. device: Device to run evaluation on (CPU or GPU). epoch: Current epoch number. args: Configuration object containing evaluation parameters. log_writer: Optional; TensorBoard SummaryWriter for logging. prefix: String prefix for logging metrics. Returns: dict: Dictionary containing evaluation metrics (average and median values). """ model.eval() metric_logger = train_tools.MetricLogger(delimiter=" ") metric_logger.meters = defaultdict( lambda: train_tools.SmoothedValue(window_size=9**9) ) header = "Test Epoch: [{}]".format(epoch) if log_writer is not None: print("log_dir: {}".format(log_writer.log_dir)) if args.train_params.freeze_val_samples_across_all_epochs: dataloader_epoch = 0 else: dataloader_epoch = epoch if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"): data_loader.dataset.set_epoch(dataloader_epoch) if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"): data_loader.sampler.set_epoch(dataloader_epoch) if hasattr(data_loader, "batch_sampler") and hasattr( data_loader.batch_sampler, "set_epoch" ): data_loader.batch_sampler.set_epoch(dataloader_epoch) for _, batch in enumerate( metric_logger.log_every(data_loader, args.train_params.print_freq, header) ): n_views = len(batch) loss_tuple = loss_of_one_batch_multi_view( batch, model, criterion, device, use_amp=bool(args.train_params.amp), amp_dtype=args.train_params.amp_dtype, ret="loss", ) loss_value, loss_details = loss_tuple # criterion returns two values if n_views > 2: loss_value = loss_value * ( 2 / n_views ) # scale the loss relative to the number of views (base is 2 views) metric_logger.update(loss=float(loss_value), **loss_details) # # Gather the stats from all processes # metric_logger.synchronize_between_processes() # print("Averaged stats:", metric_logger) aggs = [("avg", "global_avg"), ("med", "median")] results = { f"{k}_{tag}": getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs } if log_writer is not None: for name, val in results.items(): log_writer.add_scalar(prefix + "_" + name, val, 1000 * epoch) return results