Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from mmengine.runner import load_checkpoint | |
| class AlexNet(nn.Module): | |
| """AlexNet backbone. | |
| Args: | |
| num_classes (int): number of classes for classification. | |
| """ | |
| def __init__(self, num_classes: int = -1): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.features = nn.Sequential( | |
| nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=3, stride=2), | |
| nn.Conv2d(64, 192, kernel_size=5, padding=2), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=3, stride=2), | |
| nn.Conv2d(192, 384, kernel_size=3, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(384, 256, kernel_size=3, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(256, 256, kernel_size=3, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=3, stride=2), | |
| ) | |
| if self.num_classes > 0: | |
| self.classifier = nn.Sequential( | |
| nn.Dropout(), | |
| nn.Linear(256 * 6 * 6, 4096), | |
| nn.ReLU(inplace=True), | |
| nn.Dropout(), | |
| nn.Linear(4096, 4096), | |
| nn.ReLU(inplace=True), | |
| nn.Linear(4096, num_classes), | |
| ) | |
| def init_weights(self, pretrained: Optional[str] = None) -> None: | |
| if isinstance(pretrained, str): | |
| logger = logging.getLogger() | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| # use default initializer | |
| pass | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.features(x) | |
| if self.num_classes > 0: | |
| x = x.view(x.size(0), 256 * 6 * 6) | |
| x = self.classifier(x) | |
| return x | |