Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import argparse | |
| import os | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from matplotlib.ticker import MultipleLocator | |
| from mmcv.ops import nms | |
| from mmengine import Config, DictAction | |
| from mmengine.fileio import load | |
| from mmengine.registry import init_default_scope | |
| from mmengine.utils import ProgressBar | |
| from mmdet.evaluation import bbox_overlaps | |
| from mmdet.registry import DATASETS | |
| from mmdet.utils import replace_cfg_vals, update_data_root | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='Generate confusion matrix from detection results') | |
| parser.add_argument('config', help='test config file path') | |
| parser.add_argument( | |
| 'prediction_path', help='prediction path where test .pkl result') | |
| parser.add_argument( | |
| 'save_dir', help='directory where confusion matrix will be saved') | |
| parser.add_argument( | |
| '--show', action='store_true', help='show confusion matrix') | |
| parser.add_argument( | |
| '--color-theme', | |
| default='plasma', | |
| help='theme of the matrix color map') | |
| parser.add_argument( | |
| '--score-thr', | |
| type=float, | |
| default=0.3, | |
| help='score threshold to filter detection bboxes') | |
| parser.add_argument( | |
| '--tp-iou-thr', | |
| type=float, | |
| default=0.5, | |
| help='IoU threshold to be considered as matched') | |
| parser.add_argument( | |
| '--nms-iou-thr', | |
| type=float, | |
| default=None, | |
| help='nms IoU threshold, only applied when users want to change the' | |
| 'nms IoU threshold.') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. If the value to ' | |
| 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
| 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
| 'Note that the quotation marks are necessary and that no white space ' | |
| 'is allowed.') | |
| args = parser.parse_args() | |
| return args | |
| def calculate_confusion_matrix(dataset, | |
| results, | |
| score_thr=0, | |
| nms_iou_thr=None, | |
| tp_iou_thr=0.5): | |
| """Calculate the confusion matrix. | |
| Args: | |
| dataset (Dataset): Test or val dataset. | |
| results (list[ndarray]): A list of detection results in each image. | |
| score_thr (float|optional): Score threshold to filter bboxes. | |
| Default: 0. | |
| nms_iou_thr (float|optional): nms IoU threshold, the detection results | |
| have done nms in the detector, only applied when users want to | |
| change the nms IoU threshold. Default: None. | |
| tp_iou_thr (float|optional): IoU threshold to be considered as matched. | |
| Default: 0.5. | |
| """ | |
| num_classes = len(dataset.metainfo['classes']) | |
| confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1]) | |
| assert len(dataset) == len(results) | |
| prog_bar = ProgressBar(len(results)) | |
| for idx, per_img_res in enumerate(results): | |
| res_bboxes = per_img_res['pred_instances'] | |
| gts = dataset.get_data_info(idx)['instances'] | |
| analyze_per_img_dets(confusion_matrix, gts, res_bboxes, score_thr, | |
| tp_iou_thr, nms_iou_thr) | |
| prog_bar.update() | |
| return confusion_matrix | |
| def analyze_per_img_dets(confusion_matrix, | |
| gts, | |
| result, | |
| score_thr=0, | |
| tp_iou_thr=0.5, | |
| nms_iou_thr=None): | |
| """Analyze detection results on each image. | |
| Args: | |
| confusion_matrix (ndarray): The confusion matrix, | |
| has shape (num_classes + 1, num_classes + 1). | |
| gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4). | |
| gt_labels (ndarray): Ground truth labels, has shape (num_gt). | |
| result (ndarray): Detection results, has shape | |
| (num_classes, num_bboxes, 5). | |
| score_thr (float): Score threshold to filter bboxes. | |
| Default: 0. | |
| tp_iou_thr (float): IoU threshold to be considered as matched. | |
| Default: 0.5. | |
| nms_iou_thr (float|optional): nms IoU threshold, the detection results | |
| have done nms in the detector, only applied when users want to | |
| change the nms IoU threshold. Default: None. | |
| """ | |
| true_positives = np.zeros(len(gts)) | |
| gt_bboxes = [] | |
| gt_labels = [] | |
| for gt in gts: | |
| gt_bboxes.append(gt['bbox']) | |
| gt_labels.append(gt['bbox_label']) | |
| gt_bboxes = np.array(gt_bboxes) | |
| gt_labels = np.array(gt_labels) | |
| unique_label = np.unique(result['labels'].numpy()) | |
| for det_label in unique_label: | |
| mask = (result['labels'] == det_label) | |
| det_bboxes = result['bboxes'][mask].numpy() | |
| det_scores = result['scores'][mask].numpy() | |
| if nms_iou_thr: | |
| det_bboxes, _ = nms( | |
| det_bboxes, det_scores, nms_iou_thr, score_threshold=score_thr) | |
| ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes) | |
| for i, score in enumerate(det_scores): | |
| det_match = 0 | |
| if score >= score_thr: | |
| for j, gt_label in enumerate(gt_labels): | |
| if ious[i, j] >= tp_iou_thr: | |
| det_match += 1 | |
| if gt_label == det_label: | |
| true_positives[j] += 1 # TP | |
| confusion_matrix[gt_label, det_label] += 1 | |
| if det_match == 0: # BG FP | |
| confusion_matrix[-1, det_label] += 1 | |
| for num_tp, gt_label in zip(true_positives, gt_labels): | |
| if num_tp == 0: # FN | |
| confusion_matrix[gt_label, -1] += 1 | |
| def plot_confusion_matrix(confusion_matrix, | |
| labels, | |
| save_dir=None, | |
| show=True, | |
| title='Normalized Confusion Matrix', | |
| color_theme='plasma'): | |
| """Draw confusion matrix with matplotlib. | |
| Args: | |
| confusion_matrix (ndarray): The confusion matrix. | |
| labels (list[str]): List of class names. | |
| save_dir (str|optional): If set, save the confusion matrix plot to the | |
| given path. Default: None. | |
| show (bool): Whether to show the plot. Default: True. | |
| title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | |
| color_theme (str): Theme of the matrix color map. Default: `plasma`. | |
| """ | |
| # normalize the confusion matrix | |
| per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | |
| confusion_matrix = \ | |
| confusion_matrix.astype(np.float32) / per_label_sums * 100 | |
| num_classes = len(labels) | |
| fig, ax = plt.subplots( | |
| figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180) | |
| cmap = plt.get_cmap(color_theme) | |
| im = ax.imshow(confusion_matrix, cmap=cmap) | |
| plt.colorbar(mappable=im, ax=ax) | |
| title_font = {'weight': 'bold', 'size': 12} | |
| ax.set_title(title, fontdict=title_font) | |
| label_font = {'size': 10} | |
| plt.ylabel('Ground Truth Label', fontdict=label_font) | |
| plt.xlabel('Prediction Label', fontdict=label_font) | |
| # draw locator | |
| xmajor_locator = MultipleLocator(1) | |
| xminor_locator = MultipleLocator(0.5) | |
| ax.xaxis.set_major_locator(xmajor_locator) | |
| ax.xaxis.set_minor_locator(xminor_locator) | |
| ymajor_locator = MultipleLocator(1) | |
| yminor_locator = MultipleLocator(0.5) | |
| ax.yaxis.set_major_locator(ymajor_locator) | |
| ax.yaxis.set_minor_locator(yminor_locator) | |
| # draw grid | |
| ax.grid(True, which='minor', linestyle='-') | |
| # draw label | |
| ax.set_xticks(np.arange(num_classes)) | |
| ax.set_yticks(np.arange(num_classes)) | |
| ax.set_xticklabels(labels) | |
| ax.set_yticklabels(labels) | |
| ax.tick_params( | |
| axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | |
| plt.setp( | |
| ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | |
| # draw confution matrix value | |
| for i in range(num_classes): | |
| for j in range(num_classes): | |
| ax.text( | |
| j, | |
| i, | |
| '{}%'.format( | |
| int(confusion_matrix[ | |
| i, | |
| j]) if not np.isnan(confusion_matrix[i, j]) else -1), | |
| ha='center', | |
| va='center', | |
| color='w', | |
| size=7) | |
| ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | |
| fig.tight_layout() | |
| if save_dir is not None: | |
| plt.savefig( | |
| os.path.join(save_dir, 'confusion_matrix.png'), format='png') | |
| if show: | |
| plt.show() | |
| def main(): | |
| args = parse_args() | |
| cfg = Config.fromfile(args.config) | |
| # replace the ${key} with the value of cfg.key | |
| cfg = replace_cfg_vals(cfg) | |
| # update data root according to MMDET_DATASETS | |
| update_data_root(cfg) | |
| if args.cfg_options is not None: | |
| cfg.merge_from_dict(args.cfg_options) | |
| init_default_scope(cfg.get('default_scope', 'mmdet')) | |
| results = load(args.prediction_path) | |
| if not os.path.exists(args.save_dir): | |
| os.makedirs(args.save_dir) | |
| dataset = DATASETS.build(cfg.test_dataloader.dataset) | |
| confusion_matrix = calculate_confusion_matrix(dataset, results, | |
| args.score_thr, | |
| args.nms_iou_thr, | |
| args.tp_iou_thr) | |
| plot_confusion_matrix( | |
| confusion_matrix, | |
| dataset.metainfo['classes'] + ('background', ), | |
| save_dir=args.save_dir, | |
| show=args.show, | |
| color_theme=args.color_theme) | |
| if __name__ == '__main__': | |
| main() | |