Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import argparse | |
| import copy | |
| import os | |
| import os.path as osp | |
| from mmengine.config import Config, DictAction | |
| from mmengine.dist import get_dist_info | |
| from mmengine.evaluator import DumpResults | |
| from mmengine.fileio import dump | |
| from mmengine.runner import Runner | |
| from mmdet.engine.hooks.utils import trigger_visualization_hook | |
| from mmdet.registry import RUNNERS | |
| from tools.analysis_tools.robustness_eval import get_results | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description='MMDet test detector') | |
| parser.add_argument('config', help='test config file path') | |
| parser.add_argument('checkpoint', help='checkpoint file') | |
| parser.add_argument( | |
| '--out', | |
| type=str, | |
| help='dump predictions to a pickle file for offline evaluation') | |
| parser.add_argument( | |
| '--corruptions', | |
| type=str, | |
| nargs='+', | |
| default='benchmark', | |
| choices=[ | |
| 'all', 'benchmark', 'noise', 'blur', 'weather', 'digital', | |
| 'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise', | |
| 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', | |
| 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', | |
| 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', | |
| 'spatter', 'saturate' | |
| ], | |
| help='corruptions') | |
| parser.add_argument( | |
| '--work-dir', | |
| help='the directory to save the file containing evaluation metrics') | |
| parser.add_argument( | |
| '--severities', | |
| type=int, | |
| nargs='+', | |
| default=[0, 1, 2, 3, 4, 5], | |
| help='corruption severity levels') | |
| parser.add_argument( | |
| '--summaries', | |
| type=bool, | |
| default=False, | |
| help='Print summaries for every corruption and severity') | |
| parser.add_argument('--show', action='store_true', help='show results') | |
| parser.add_argument( | |
| '--show-dir', help='directory where painted images will be saved') | |
| parser.add_argument( | |
| '--wait-time', type=float, default=2, help='the interval of show (s)') | |
| parser.add_argument('--seed', type=int, default=None, help='random seed') | |
| parser.add_argument( | |
| '--launcher', | |
| choices=['none', 'pytorch', 'slurm', 'mpi'], | |
| default='none', | |
| help='job launcher') | |
| parser.add_argument('--local_rank', type=int, default=0) | |
| parser.add_argument( | |
| '--final-prints', | |
| type=str, | |
| nargs='+', | |
| choices=['P', 'mPC', 'rPC'], | |
| default='mPC', | |
| help='corruption benchmark metric to print at the end') | |
| parser.add_argument( | |
| '--final-prints-aggregate', | |
| type=str, | |
| choices=['all', 'benchmark'], | |
| default='benchmark', | |
| help='aggregate all results or only those for benchmark corruptions') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. If the value to ' | |
| 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
| 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
| 'Note that the quotation marks are necessary and that no white space ' | |
| 'is allowed.') | |
| args = parser.parse_args() | |
| if 'LOCAL_RANK' not in os.environ: | |
| os.environ['LOCAL_RANK'] = str(args.local_rank) | |
| return args | |
| def main(): | |
| args = parse_args() | |
| assert args.out or args.show or args.show_dir, \ | |
| ('Please specify at least one operation (save or show the results) ' | |
| 'with the argument "--out", "--show" or "show-dir"') | |
| # load config | |
| cfg = Config.fromfile(args.config) | |
| cfg.launcher = args.launcher | |
| if args.cfg_options is not None: | |
| cfg.merge_from_dict(args.cfg_options) | |
| # work_dir is determined in this priority: CLI > segment in file > filename | |
| if args.work_dir is not None: | |
| # update configs according to CLI args if args.work_dir is not None | |
| cfg.work_dir = args.work_dir | |
| elif cfg.get('work_dir', None) is None: | |
| # use config filename as default work_dir if cfg.work_dir is None | |
| cfg.work_dir = osp.join('./work_dirs', | |
| osp.splitext(osp.basename(args.config))[0]) | |
| cfg.model.backbone.init_cfg.type = None | |
| cfg.test_dataloader.dataset.test_mode = True | |
| cfg.load_from = args.checkpoint | |
| if args.show or args.show_dir: | |
| cfg = trigger_visualization_hook(cfg, args) | |
| # build the runner from config | |
| if 'runner_type' not in cfg: | |
| # build the default runner | |
| runner = Runner.from_cfg(cfg) | |
| else: | |
| # build customized runner from the registry | |
| # if 'runner_type' is set in the cfg | |
| runner = RUNNERS.build(cfg) | |
| # add `DumpResults` dummy metric | |
| if args.out is not None: | |
| assert args.out.endswith(('.pkl', '.pickle')), \ | |
| 'The dump file must be a pkl file.' | |
| runner.test_evaluator.metrics.append( | |
| DumpResults(out_file_path=args.out)) | |
| if 'all' in args.corruptions: | |
| corruptions = [ | |
| 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', | |
| 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', | |
| 'brightness', 'contrast', 'elastic_transform', 'pixelate', | |
| 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', | |
| 'saturate' | |
| ] | |
| elif 'benchmark' in args.corruptions: | |
| corruptions = [ | |
| 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', | |
| 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', | |
| 'brightness', 'contrast', 'elastic_transform', 'pixelate', | |
| 'jpeg_compression' | |
| ] | |
| elif 'noise' in args.corruptions: | |
| corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise'] | |
| elif 'blur' in args.corruptions: | |
| corruptions = [ | |
| 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur' | |
| ] | |
| elif 'weather' in args.corruptions: | |
| corruptions = ['snow', 'frost', 'fog', 'brightness'] | |
| elif 'digital' in args.corruptions: | |
| corruptions = [ | |
| 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' | |
| ] | |
| elif 'holdout' in args.corruptions: | |
| corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate'] | |
| elif 'None' in args.corruptions: | |
| corruptions = ['None'] | |
| args.severities = [0] | |
| else: | |
| corruptions = args.corruptions | |
| aggregated_results = {} | |
| for corr_i, corruption in enumerate(corruptions): | |
| aggregated_results[corruption] = {} | |
| for sev_i, corruption_severity in enumerate(args.severities): | |
| # evaluate severity 0 (= no corruption) only once | |
| if corr_i > 0 and corruption_severity == 0: | |
| aggregated_results[corruption][0] = \ | |
| aggregated_results[corruptions[0]][0] | |
| continue | |
| test_loader_cfg = copy.deepcopy(cfg.test_dataloader) | |
| # assign corruption and severity | |
| if corruption_severity > 0: | |
| corruption_trans = dict( | |
| type='Corrupt', | |
| corruption=corruption, | |
| severity=corruption_severity) | |
| # TODO: hard coded "1", we assume that the first step is | |
| # loading images, which needs to be fixed in the future | |
| test_loader_cfg.dataset.pipeline.insert(1, corruption_trans) | |
| test_loader = runner.build_dataloader(test_loader_cfg) | |
| runner.test_loop.dataloader = test_loader | |
| # set random seeds | |
| if args.seed is not None: | |
| runner.set_randomness(args.seed) | |
| # print info | |
| print(f'\nTesting {corruption} at severity {corruption_severity}') | |
| eval_results = runner.test() | |
| if args.out: | |
| eval_results_filename = ( | |
| osp.splitext(args.out)[0] + '_results' + | |
| osp.splitext(args.out)[1]) | |
| aggregated_results[corruption][ | |
| corruption_severity] = eval_results | |
| dump(aggregated_results, eval_results_filename) | |
| rank, _ = get_dist_info() | |
| if rank == 0: | |
| eval_results_filename = ( | |
| osp.splitext(args.out)[0] + '_results' + osp.splitext(args.out)[1]) | |
| # print final results | |
| print('\nAggregated results:') | |
| prints = args.final_prints | |
| aggregate = args.final_prints_aggregate | |
| if cfg.dataset_type == 'VOCDataset': | |
| get_results( | |
| eval_results_filename, | |
| dataset='voc', | |
| prints=prints, | |
| aggregate=aggregate) | |
| else: | |
| get_results( | |
| eval_results_filename, | |
| dataset='coco', | |
| prints=prints, | |
| aggregate=aggregate) | |
| if __name__ == '__main__': | |
| main() | |