Spaces:
Paused
Paused
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import base64 | |
| import os | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from ts.torch_handler.base_handler import BaseHandler | |
| from mmdet.apis import inference_detector, init_detector | |
| class MMdetHandler(BaseHandler): | |
| threshold = 0.5 | |
| def initialize(self, context): | |
| properties = context.system_properties | |
| self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.device = torch.device(self.map_location + ':' + | |
| str(properties.get('gpu_id')) if torch.cuda. | |
| is_available() else self.map_location) | |
| self.manifest = context.manifest | |
| model_dir = properties.get('model_dir') | |
| serialized_file = self.manifest['model']['serializedFile'] | |
| checkpoint = os.path.join(model_dir, serialized_file) | |
| self.config_file = os.path.join(model_dir, 'config.py') | |
| self.model = init_detector(self.config_file, checkpoint, self.device) | |
| self.initialized = True | |
| def preprocess(self, data): | |
| images = [] | |
| for row in data: | |
| image = row.get('data') or row.get('body') | |
| if isinstance(image, str): | |
| image = base64.b64decode(image) | |
| image = mmcv.imfrombytes(image) | |
| images.append(image) | |
| return images | |
| def inference(self, data, *args, **kwargs): | |
| results = inference_detector(self.model, data) | |
| return results | |
| def postprocess(self, data): | |
| # Format output following the example ObjectDetectionHandler format | |
| output = [] | |
| for data_sample in data: | |
| pred_instances = data_sample.pred_instances | |
| bboxes = pred_instances.bboxes.cpu().numpy().astype( | |
| np.float32).tolist() | |
| labels = pred_instances.labels.cpu().numpy().astype( | |
| np.int32).tolist() | |
| scores = pred_instances.scores.cpu().numpy().astype( | |
| np.float32).tolist() | |
| preds = [] | |
| for idx in range(len(labels)): | |
| cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ | |
| idx] | |
| if cls_score >= self.threshold: | |
| class_name = self.model.dataset_meta['classes'][cls_label] | |
| result = dict( | |
| class_label=cls_label, | |
| class_name=class_name, | |
| bbox=bbox, | |
| score=cls_score) | |
| preds.append(result) | |
| output.append(preds) | |
| return output | |