Spaces:
Runtime error
Runtime error
| struct quant_option { | |
| std::string name; | |
| llama_ftype ftype; | |
| std::string desc; | |
| }; | |
| static const std::vector<struct quant_option> QUANT_OPTIONS = { | |
| { | |
| "Q4_0", | |
| LLAMA_FTYPE_MOSTLY_Q4_0, | |
| " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M", | |
| }, | |
| { | |
| "Q4_1", | |
| LLAMA_FTYPE_MOSTLY_Q4_1, | |
| " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L", | |
| }, | |
| { | |
| "Q5_0", | |
| LLAMA_FTYPE_MOSTLY_Q5_0, | |
| " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M", | |
| }, | |
| { | |
| "Q5_1", | |
| LLAMA_FTYPE_MOSTLY_Q5_1, | |
| " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M", | |
| }, | |
| { | |
| "Q2_K", | |
| LLAMA_FTYPE_MOSTLY_Q2_K, | |
| " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended", | |
| }, | |
| { | |
| "Q3_K", | |
| LLAMA_FTYPE_MOSTLY_Q3_K_M, | |
| "alias for Q3_K_M" | |
| }, | |
| { | |
| "Q3_K_S", | |
| LLAMA_FTYPE_MOSTLY_Q3_K_S, | |
| " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss", | |
| }, | |
| { | |
| "Q3_K_M", | |
| LLAMA_FTYPE_MOSTLY_Q3_K_M, | |
| " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss", | |
| }, | |
| { | |
| "Q3_K_L", | |
| LLAMA_FTYPE_MOSTLY_Q3_K_L, | |
| " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss", | |
| }, | |
| { | |
| "Q4_K", | |
| LLAMA_FTYPE_MOSTLY_Q4_K_M, | |
| "alias for Q4_K_M", | |
| }, | |
| { | |
| "Q4_K_S", | |
| LLAMA_FTYPE_MOSTLY_Q4_K_S, | |
| " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss", | |
| }, | |
| { | |
| "Q4_K_M", | |
| LLAMA_FTYPE_MOSTLY_Q4_K_M, | |
| " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*", | |
| }, | |
| { | |
| "Q5_K", | |
| LLAMA_FTYPE_MOSTLY_Q5_K_M, | |
| "alias for Q5_K_M", | |
| }, | |
| { | |
| "Q5_K_S", | |
| LLAMA_FTYPE_MOSTLY_Q5_K_S, | |
| " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*", | |
| }, | |
| { | |
| "Q5_K_M", | |
| LLAMA_FTYPE_MOSTLY_Q5_K_M, | |
| " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*", | |
| }, | |
| { | |
| "Q6_K", | |
| LLAMA_FTYPE_MOSTLY_Q6_K, | |
| " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss", | |
| }, | |
| { | |
| "Q8_0", | |
| LLAMA_FTYPE_MOSTLY_Q8_0, | |
| " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended", | |
| }, | |
| { | |
| "F16", | |
| LLAMA_FTYPE_MOSTLY_F16, | |
| "13.00G @ 7B - extremely large, virtually no quality loss - not recommended", | |
| }, | |
| { | |
| "F32", | |
| LLAMA_FTYPE_ALL_F32, | |
| "26.00G @ 7B - absolutely huge, lossless - not recommended", | |
| }, | |
| }; | |
| bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { | |
| std::string ftype_str; | |
| for (auto ch : ftype_str_in) { | |
| ftype_str.push_back(std::toupper(ch)); | |
| } | |
| for (auto & it : QUANT_OPTIONS) { | |
| if (it.name == ftype_str) { | |
| ftype = it.ftype; | |
| ftype_str_out = it.name; | |
| return true; | |
| } | |
| } | |
| try { | |
| int ftype_int = std::stoi(ftype_str); | |
| for (auto & it : QUANT_OPTIONS) { | |
| if (it.ftype == ftype_int) { | |
| ftype = it.ftype; | |
| ftype_str_out = it.name; | |
| return true; | |
| } | |
| } | |
| } | |
| catch (...) { | |
| // stoi failed | |
| } | |
| return false; | |
| } | |
| // usage: | |
| // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] | |
| // | |
| void usage(const char * executable) { | |
| fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable); | |
| fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); | |
| fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); | |
| fprintf(stderr, "\nAllowed quantization types:\n"); | |
| for (auto & it : QUANT_OPTIONS) { | |
| printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str()); | |
| } | |
| exit(1); | |
| } | |
| int main(int argc, char ** argv) { | |
| if (argc < 3) { | |
| usage(argv[0]); | |
| } | |
| llama_model_quantize_params params = llama_model_quantize_default_params(); | |
| int arg_idx = 1; | |
| for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { | |
| if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { | |
| params.quantize_output_tensor = false; | |
| } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { | |
| params.allow_requantize = true; | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } | |
| if (argc - arg_idx < 3) { | |
| usage(argv[0]); | |
| } | |
| llama_backend_init(false); | |
| // parse command line arguments | |
| const std::string fname_inp = argv[arg_idx]; | |
| arg_idx++; | |
| std::string fname_out; | |
| std::string ftype_str; | |
| if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { | |
| std::string fpath; | |
| const size_t pos = fname_inp.find_last_of('/'); | |
| if (pos != std::string::npos) { | |
| fpath = fname_inp.substr(0, pos + 1); | |
| } | |
| // export as [inp path]/ggml-model-[ftype].bin | |
| fname_out = fpath + "ggml-model-" + ftype_str + ".bin"; | |
| arg_idx++; | |
| } | |
| else { | |
| fname_out = argv[arg_idx]; | |
| arg_idx++; | |
| if (argc <= arg_idx) { | |
| fprintf(stderr, "%s: missing ftype\n", __func__); | |
| return 1; | |
| } | |
| if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { | |
| fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]); | |
| return 1; | |
| } | |
| arg_idx++; | |
| } | |
| // parse nthreads | |
| if (argc > arg_idx) { | |
| try { | |
| params.nthread = std::stoi(argv[arg_idx]); | |
| } | |
| catch (const std::exception & e) { | |
| fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what()); | |
| return 1; | |
| } | |
| } | |
| fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); | |
| if (params.nthread > 0) { | |
| fprintf(stderr, " using %d threads", params.nthread); | |
| } | |
| fprintf(stderr, "\n"); | |
| const int64_t t_main_start_us = llama_time_us(); | |
| int64_t t_quantize_us = 0; | |
| // load the model | |
| { | |
| const int64_t t_start_us = llama_time_us(); | |
| if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) { | |
| fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); | |
| return 1; | |
| } | |
| t_quantize_us = llama_time_us() - t_start_us; | |
| } | |
| // report timing | |
| { | |
| const int64_t t_main_end_us = llama_time_us(); | |
| printf("\n"); | |
| printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0); | |
| printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); | |
| } | |
| llama_backend_free(); | |
| return 0; | |
| } | |