Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import datasets | |
| import pandas as pd | |
| _CITATION = """\ | |
| @article{huang2023ceval, | |
| title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models}, | |
| author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and others}, | |
| journal={arXiv preprint arXiv:2305.08322}, | |
| year={2023} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| C-Eval is a comprehensive Chinese evaluation suite for foundation models. | |
| It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels. | |
| """ | |
| _HOMEPAGE = "https://cevalbenchmark.com" | |
| _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" | |
| _URL = "ceval.zip" | |
| task_list = [ | |
| "computer_network", | |
| "operating_system", | |
| "computer_architecture", | |
| "college_programming", | |
| "college_physics", | |
| "college_chemistry", | |
| "advanced_mathematics", | |
| "probability_and_statistics", | |
| "discrete_mathematics", | |
| "electrical_engineer", | |
| "metrology_engineer", | |
| "high_school_mathematics", | |
| "high_school_physics", | |
| "high_school_chemistry", | |
| "high_school_biology", | |
| "middle_school_mathematics", | |
| "middle_school_biology", | |
| "middle_school_physics", | |
| "middle_school_chemistry", | |
| "veterinary_medicine", | |
| "college_economics", | |
| "business_administration", | |
| "marxism", | |
| "mao_zedong_thought", | |
| "education_science", | |
| "teacher_qualification", | |
| "high_school_politics", | |
| "high_school_geography", | |
| "middle_school_politics", | |
| "middle_school_geography", | |
| "modern_chinese_history", | |
| "ideological_and_moral_cultivation", | |
| "logic", | |
| "law", | |
| "chinese_language_and_literature", | |
| "art_studies", | |
| "professional_tour_guide", | |
| "legal_professional", | |
| "high_school_chinese", | |
| "high_school_history", | |
| "middle_school_history", | |
| "civil_servant", | |
| "sports_science", | |
| "plant_protection", | |
| "basic_medicine", | |
| "clinical_medicine", | |
| "urban_and_rural_planner", | |
| "accountant", | |
| "fire_engineer", | |
| "environmental_impact_assessment_engineer", | |
| "tax_accountant", | |
| "physician", | |
| ] | |
| class CevalConfig(datasets.BuilderConfig): | |
| def __init__(self, **kwargs): | |
| super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| class Ceval(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| CevalConfig( | |
| name=task_name, | |
| ) | |
| for task_name in task_list | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("int32"), | |
| "question": datasets.Value("string"), | |
| "A": datasets.Value("string"), | |
| "B": datasets.Value("string"), | |
| "C": datasets.Value("string"), | |
| "D": datasets.Value("string"), | |
| "answer": datasets.Value("string"), | |
| "explanation": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_dir = dl_manager.download_and_extract(_URL) | |
| task_name = self.config.name | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| df = pd.read_csv(filepath, encoding="utf-8") | |
| for i, instance in enumerate(df.to_dict(orient="records")): | |
| if "answer" not in instance.keys(): | |
| instance["answer"] = "" | |
| if "explanation" not in instance.keys(): | |
| instance["explanation"] = "" | |
| yield i, instance | |