Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| from typing import Optional | |
| import fire | |
| from transformers import Seq2SeqTrainingArguments | |
| from llamafactory.data import get_dataset, get_template_and_fix_tokenizer | |
| from llamafactory.extras.constants import IGNORE_INDEX | |
| from llamafactory.extras.misc import get_device_count | |
| from llamafactory.extras.packages import is_vllm_available | |
| from llamafactory.hparams import get_infer_args | |
| from llamafactory.model import load_tokenizer | |
| if is_vllm_available(): | |
| from vllm import LLM, SamplingParams | |
| from vllm.lora.request import LoRARequest | |
| def vllm_infer( | |
| model_name_or_path: str, | |
| adapter_name_or_path: str = None, | |
| dataset: str = "alpaca_en_demo", | |
| dataset_dir: str = "data", | |
| template: str = "default", | |
| cutoff_len: int = 2048, | |
| max_samples: Optional[int] = None, | |
| vllm_config: str = "{}", | |
| save_name: str = "generated_predictions.jsonl", | |
| temperature: float = 0.95, | |
| top_p: float = 0.7, | |
| top_k: int = 50, | |
| max_new_tokens: int = 1024, | |
| repetition_penalty: float = 1.0, | |
| skip_special_tokens: bool = True, | |
| seed: Optional[int] = None, | |
| pipeline_parallel_size: int = 1, | |
| image_max_pixels: int = 768 * 768, | |
| image_min_pixels: int = 32 * 32, | |
| ): | |
| r"""Perform batch generation using vLLM engine, which supports tensor parallelism. | |
| Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo | |
| """ | |
| if pipeline_parallel_size > get_device_count(): | |
| raise ValueError("Pipeline parallel size should be smaller than the number of gpus.") | |
| model_args, data_args, _, generating_args = get_infer_args( | |
| dict( | |
| model_name_or_path=model_name_or_path, | |
| adapter_name_or_path=adapter_name_or_path, | |
| dataset=dataset, | |
| dataset_dir=dataset_dir, | |
| template=template, | |
| cutoff_len=cutoff_len, | |
| max_samples=max_samples, | |
| preprocessing_num_workers=16, | |
| vllm_config=vllm_config, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| max_new_tokens=max_new_tokens, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| ) | |
| training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir") | |
| tokenizer_module = load_tokenizer(model_args) | |
| tokenizer = tokenizer_module["tokenizer"] | |
| template_obj = get_template_and_fix_tokenizer(tokenizer, data_args) | |
| template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate | |
| dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module) | |
| inputs, prompts, labels = [], [], [] | |
| for sample in dataset_module["train_dataset"]: | |
| if sample["images"]: | |
| multi_modal_data = { | |
| "image": template_obj.mm_plugin._regularize_images( | |
| sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels | |
| )["images"] | |
| } | |
| elif sample["videos"]: | |
| multi_modal_data = { | |
| "video": template_obj.mm_plugin._regularize_videos( | |
| sample["videos"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels | |
| )["videos"] | |
| } | |
| elif sample["audios"]: | |
| audio_data = template_obj.mm_plugin._regularize_audios( | |
| sample["audios"], | |
| sampling_rate=16000, | |
| ) | |
| multi_modal_data = {"audio": zip(audio_data["audios"], audio_data["sampling_rates"])} | |
| else: | |
| multi_modal_data = None | |
| inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data}) | |
| prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=skip_special_tokens)) | |
| labels.append( | |
| tokenizer.decode( | |
| list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=skip_special_tokens | |
| ) | |
| ) | |
| sampling_params = SamplingParams( | |
| repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0 | |
| temperature=generating_args.temperature, | |
| top_p=generating_args.top_p or 1.0, # top_p must > 0 | |
| top_k=generating_args.top_k or -1, # top_k must > 0 | |
| stop_token_ids=template_obj.get_stop_token_ids(tokenizer), | |
| max_tokens=generating_args.max_new_tokens, | |
| skip_special_tokens=skip_special_tokens, | |
| seed=seed, | |
| ) | |
| if model_args.adapter_name_or_path is not None: | |
| lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0]) | |
| else: | |
| lora_request = None | |
| engine_args = { | |
| "model": model_args.model_name_or_path, | |
| "trust_remote_code": True, | |
| "dtype": model_args.infer_dtype, | |
| "max_model_len": cutoff_len + max_new_tokens, | |
| "tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1, | |
| "pipeline_parallel_size": pipeline_parallel_size, | |
| "disable_log_stats": True, | |
| "enable_lora": model_args.adapter_name_or_path is not None, | |
| } | |
| if template_obj.mm_plugin.__class__.__name__ != "BasePlugin": | |
| engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2} | |
| if isinstance(model_args.vllm_config, dict): | |
| engine_args.update(model_args.vllm_config) | |
| results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request) | |
| preds = [result.outputs[0].text for result in results] | |
| with open(save_name, "w", encoding="utf-8") as f: | |
| for text, pred, label in zip(prompts, preds, labels): | |
| f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n") | |
| print("*" * 70) | |
| print(f"{len(prompts)} generated results have been saved at {save_name}.") | |
| print("*" * 70) | |
| if __name__ == "__main__": | |
| fire.Fire(vllm_infer) | |