Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import torch | |
| from PIL import Image | |
| from llamafactory.data import get_template_and_fix_tokenizer | |
| from llamafactory.data.collator import MultiModalDataCollatorForSeq2Seq, prepare_4d_attention_mask | |
| from llamafactory.extras.constants import IGNORE_INDEX | |
| from llamafactory.hparams import get_infer_args | |
| from llamafactory.model import load_tokenizer | |
| TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
| def test_base_collator(): | |
| model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"}) | |
| tokenizer_module = load_tokenizer(model_args) | |
| template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) | |
| data_collator = MultiModalDataCollatorForSeq2Seq( | |
| template=template, | |
| pad_to_multiple_of=8, | |
| label_pad_token_id=IGNORE_INDEX, | |
| **tokenizer_module, | |
| ) | |
| p = tokenizer_module["tokenizer"].pad_token_id | |
| q = IGNORE_INDEX | |
| features = [ | |
| { | |
| "input_ids": [0, 1, 2, 3, 4, 5], | |
| "attention_mask": [1, 1, 1, 1, 1, 1], | |
| "labels": [q, q, 2, 3, 4, 5], | |
| }, | |
| { | |
| "input_ids": [6, 7], | |
| "attention_mask": [1, 1], | |
| "labels": [q, 7], | |
| }, | |
| ] | |
| batch_input = data_collator(features) | |
| expected_input = { | |
| "input_ids": [ | |
| [0, 1, 2, 3, 4, 5, p, p], | |
| [6, 7, p, p, p, p, p, p], | |
| ], | |
| "attention_mask": [ | |
| [1, 1, 1, 1, 1, 1, 0, 0], | |
| [1, 1, 0, 0, 0, 0, 0, 0], | |
| ], | |
| "labels": [ | |
| [q, q, 2, 3, 4, 5, q, q], | |
| [q, 7, q, q, q, q, q, q], | |
| ], | |
| } | |
| for k in batch_input.keys(): | |
| assert batch_input[k].eq(torch.tensor(expected_input[k])).all() | |
| def test_multimodal_collator(): | |
| model_args, data_args, *_ = get_infer_args( | |
| {"model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct", "template": "qwen2_vl"} | |
| ) | |
| tokenizer_module = load_tokenizer(model_args) | |
| template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) | |
| data_collator = MultiModalDataCollatorForSeq2Seq( | |
| template=template, | |
| pad_to_multiple_of=4, | |
| label_pad_token_id=IGNORE_INDEX, | |
| **tokenizer_module, | |
| ) | |
| p = tokenizer_module["tokenizer"].pad_token_id | |
| q = IGNORE_INDEX | |
| s = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_start|>") | |
| e = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|vision_end|>") | |
| m = tokenizer_module["tokenizer"].convert_tokens_to_ids("<|image_pad|>") | |
| fake_image = Image.new("RGB", (64, 64), (255, 255, 255)) | |
| features = [ | |
| { | |
| "input_ids": [0, 1, 2, 3], | |
| "attention_mask": [1, 1, 1, 1], | |
| "labels": [0, 1, 2, 3], | |
| }, | |
| ] | |
| batch_input = data_collator(features) | |
| expected_input = { | |
| "input_ids": [ | |
| [0, 1, 2, 3, s, m, m, m, m, e, p, p], | |
| ], | |
| "attention_mask": [ | |
| [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], | |
| ], | |
| "labels": [ | |
| [0, 1, 2, 3, q, q, q, q, q, q, q, q], | |
| ], | |
| **tokenizer_module["processor"].image_processor(fake_image), | |
| } | |
| for k in batch_input.keys(): | |
| assert batch_input[k].eq(torch.tensor(expected_input[k])).all() | |
| def test_4d_attention_mask(): | |
| o = 0.0 | |
| x = torch.finfo(torch.float16).min | |
| attention_mask_with_indices = torch.tensor( | |
| [ | |
| [1, 1, 2, 2, 2, 0], | |
| [1, 2, 2, 3, 3, 3], | |
| ] | |
| ) | |
| attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16) | |
| attention_mask_expected = torch.tensor( | |
| [ | |
| [ | |
| [ | |
| [o, x, x, x, x, x], | |
| [o, o, x, x, x, x], | |
| [x, x, o, x, x, x], | |
| [x, x, o, o, x, x], | |
| [x, x, o, o, o, x], | |
| [x, x, x, x, x, x], | |
| ] | |
| ], | |
| [ | |
| [ | |
| [o, x, x, x, x, x], | |
| [x, o, x, x, x, x], | |
| [x, o, o, x, x, x], | |
| [x, x, x, o, x, x], | |
| [x, x, x, o, o, x], | |
| [x, x, x, o, o, o], | |
| ] | |
| ], | |
| ], | |
| dtype=torch.float16, | |
| ) | |
| assert list(attention_mask_computed.size()) == [2, 1, 6, 6] | |
| assert torch.all(attention_mask_computed == attention_mask_expected) | |