Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from typing import TYPE_CHECKING, Any | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from PIL import Image | |
| from llamafactory.data.mm_plugin import get_mm_plugin | |
| from llamafactory.extras.packages import is_transformers_version_greater_than | |
| from llamafactory.hparams import get_infer_args | |
| from llamafactory.model import load_tokenizer | |
| if TYPE_CHECKING: | |
| from transformers import PreTrainedTokenizer, ProcessorMixin | |
| from transformers.image_processing_utils import BaseImageProcessor | |
| from llamafactory.data.mm_plugin import BasePlugin | |
| from llamafactory.model.loader import TokenizerModule | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
| TINY_LLAMA4 = os.getenv("TINY_LLAMA4", "llamafactory/tiny-random-Llama-4") | |
| MM_MESSAGES = [ | |
| {"role": "user", "content": "<image>What is in this image?"}, | |
| {"role": "assistant", "content": "A cat."}, | |
| ] | |
| OMNI_MESSAGES = [ | |
| {"role": "user", "content": "<image>What is in this image?"}, | |
| {"role": "assistant", "content": "A cat."}, | |
| {"role": "user", "content": "<audio>What is in this audio?"}, | |
| {"role": "assistant", "content": "Nothing."}, | |
| ] | |
| TEXT_MESSAGES = [ | |
| {"role": "user", "content": "How are you"}, | |
| {"role": "assistant", "content": "I am fine!"}, | |
| ] | |
| AUDIOS = [np.zeros(1600)] | |
| IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))] | |
| NO_IMAGES = [] | |
| NO_VIDEOS = [] | |
| NO_AUDIOS = [] | |
| IMGLENS = [1] | |
| AUDLENS = [1] | |
| NO_IMGLENS = [0] | |
| NO_VIDLENS = [0] | |
| NO_AUDLENS = [0] | |
| INPUT_IDS = [0, 1, 2, 3, 4] | |
| LABELS = [0, 1, 2, 3, 4] | |
| BATCH_IDS = [[1] * 1024] | |
| def _get_mm_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]: | |
| image_processor: BaseImageProcessor = getattr(processor, "image_processor") | |
| return image_processor(images=IMAGES, return_tensors="pt") | |
| def _get_omni_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]: | |
| mm_inputs = {} | |
| image_processor: BaseImageProcessor = getattr(processor, "image_processor", None) | |
| feature_extractor = getattr(processor, "feature_extractor", None) | |
| mm_inputs.update(image_processor(IMAGES, return_tensors="pt")) | |
| mm_inputs.update( | |
| feature_extractor( | |
| AUDIOS, | |
| sampling_rate=getattr(processor, "audio_sampling_rate", 16000), | |
| return_attention_mask=True, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| ) | |
| mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") | |
| return mm_inputs | |
| def _is_close(batch_a: dict[str, Any], batch_b: dict[str, Any]) -> None: | |
| assert batch_a.keys() == batch_b.keys() | |
| for key in batch_a.keys(): | |
| if isinstance(batch_a[key], torch.Tensor): | |
| assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5) | |
| elif isinstance(batch_a[key], list) and all(isinstance(item, torch.Tensor) for item in batch_a[key]): | |
| assert len(batch_a[key]) == len(batch_b[key]) | |
| for tensor_a, tensor_b in zip(batch_a[key], batch_b[key]): | |
| assert torch.allclose(tensor_a, tensor_b, rtol=1e-4, atol=1e-5) | |
| else: | |
| assert batch_a[key] == batch_b[key] | |
| def _load_tokenizer_module(model_name_or_path: str) -> "TokenizerModule": | |
| model_args, *_ = get_infer_args({"model_name_or_path": model_name_or_path, "template": "default"}) | |
| return load_tokenizer(model_args) | |
| def _check_plugin( | |
| plugin: "BasePlugin", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: "ProcessorMixin", | |
| expected_mm_messages: list[dict[str, str]] = MM_MESSAGES, | |
| expected_input_ids: list[int] = INPUT_IDS, | |
| expected_labels: list[int] = LABELS, | |
| expected_mm_inputs: dict[str, Any] = {}, | |
| expected_no_mm_inputs: dict[str, Any] = {}, | |
| ) -> None: | |
| # test omni_messages | |
| if plugin.__class__.__name__ == "Qwen2OmniPlugin": | |
| assert plugin.process_messages(OMNI_MESSAGES, IMAGES, NO_VIDEOS, AUDIOS, processor) == expected_mm_messages | |
| assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, AUDIOS, tokenizer, processor) == ( | |
| expected_input_ids, | |
| expected_labels, | |
| ) | |
| _is_close( | |
| plugin.get_mm_inputs(IMAGES, NO_VIDEOS, AUDIOS, IMGLENS, NO_VIDLENS, AUDLENS, BATCH_IDS, processor), | |
| expected_mm_inputs, | |
| ) | |
| # test mm_messages | |
| if plugin.__class__.__name__ != "BasePlugin": | |
| assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == expected_mm_messages | |
| assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == ( | |
| expected_input_ids, | |
| expected_labels, | |
| ) | |
| _is_close( | |
| plugin.get_mm_inputs(IMAGES, NO_VIDEOS, NO_AUDIOS, IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor), | |
| expected_mm_inputs, | |
| ) | |
| # test text_messages | |
| assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == TEXT_MESSAGES | |
| assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == ( | |
| INPUT_IDS, | |
| LABELS, | |
| ) | |
| _is_close( | |
| plugin.get_mm_inputs( | |
| NO_IMAGES, NO_VIDEOS, NO_AUDIOS, NO_IMGLENS, NO_VIDLENS, NO_AUDLENS, BATCH_IDS, processor | |
| ), | |
| expected_no_mm_inputs, | |
| ) | |
| def test_base_plugin(): | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA3) | |
| base_plugin = get_mm_plugin(name="base") | |
| check_inputs = {"plugin": base_plugin, **tokenizer_module} | |
| _check_plugin(**check_inputs) | |
| def test_gemma3_plugin(): | |
| image_seqlen = 256 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="google/gemma-3-4b-it") | |
| gemma3_plugin = get_mm_plugin(name="gemma3", image_token="<image_soft_token>") | |
| image_tokens_expanded = "<image_soft_token>" * image_seqlen | |
| check_inputs = {"plugin": gemma3_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| { | |
| key: value.replace("<image>", f"\n\n<start_of_image>{image_tokens_expanded}<end_of_image>\n\n") | |
| for key, value in message.items() | |
| } | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| check_inputs["expected_mm_inputs"].pop("num_crops") | |
| check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * 1024] | |
| check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[0] * 1024]} | |
| _check_plugin(**check_inputs) | |
| def test_internvl_plugin(): | |
| image_seqlen = 256 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="OpenGVLab/InternVL3-1B-hf") | |
| internvl_plugin = get_mm_plugin("intern_vl", image_token="<image>", video_token="<video>") | |
| check_inputs = {"plugin": internvl_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| { | |
| key: value.replace("<image>", f"<img>{'<IMG_CONTEXT>' * image_seqlen * 1}</img>") | |
| for key, value in message.items() | |
| } | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| check_inputs["expected_mm_inputs"].pop("num_patches", None) | |
| _check_plugin(**check_inputs) | |
| def test_llama4_plugin(): | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA4) | |
| processor = tokenizer_module["processor"] | |
| llama4_plugin = get_mm_plugin(name="llama4", image_token="<|image|>") | |
| check_inputs = {"plugin": llama4_plugin, **tokenizer_module} | |
| mm_inputs = _get_mm_inputs(tokenizer_module["processor"]) | |
| image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:] | |
| num_patches_per_chunk = int( | |
| (image_height // processor.patch_size) * (image_width // processor.patch_size) // processor.downsample_ratio | |
| ) | |
| aspect_ratios = mm_inputs.pop("aspect_ratios") | |
| tokens_for_this_image = processor._prompt_split_image(aspect_ratios[0], num_patches_per_chunk) | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", tokens_for_this_image) for key, value in message.items()} | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = mm_inputs | |
| _check_plugin(**check_inputs) | |
| def test_llava_plugin(): | |
| image_seqlen = 576 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf") | |
| llava_plugin = get_mm_plugin(name="llava", image_token="<image>") | |
| check_inputs = {"plugin": llava_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |
| def test_llava_next_plugin(): | |
| image_seqlen = 1176 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf") | |
| llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>") | |
| check_inputs = {"plugin": llava_next_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |
| def test_llava_next_video_plugin(): | |
| image_seqlen = 1176 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf") | |
| llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>") | |
| check_inputs = {"plugin": llava_next_video_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |
| def test_paligemma_plugin(): | |
| image_seqlen = 256 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224") | |
| paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>") | |
| check_inputs = {"plugin": paligemma_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_input_ids"] = [ | |
| tokenizer_module["tokenizer"].convert_tokens_to_ids(paligemma_plugin.image_token) | |
| ] * image_seqlen + INPUT_IDS | |
| check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)] | |
| check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]} | |
| _check_plugin(**check_inputs) | |
| def test_pixtral_plugin(): | |
| image_slice_height, image_slice_width = 2, 2 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b") | |
| pixtral_plugin = get_mm_plugin(name="pixtral", image_token="[IMG]") | |
| check_inputs = {"plugin": pixtral_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| { | |
| key: value.replace( | |
| "<image>", | |
| ("{}[IMG_BREAK]".format("[IMG]" * image_slice_width) * image_slice_height).rsplit("[IMG_BREAK]", 1)[0] | |
| + "[IMG_END]", | |
| ) | |
| for key, value in message.items() | |
| } | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| check_inputs["expected_mm_inputs"]["pixel_values"] = check_inputs["expected_mm_inputs"]["pixel_values"][0] | |
| _check_plugin(**check_inputs) | |
| def test_qwen2_omni_plugin(): | |
| image_seqlen = 4 | |
| audio_seqlen = 2 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2.5-Omni-7B") | |
| qwen2_omni_plugin = get_mm_plugin( | |
| name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>" | |
| ) | |
| check_inputs = {"plugin": qwen2_omni_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| { | |
| key: ( | |
| value.replace("<image>", f"<|vision_bos|>{'<|IMAGE|>' * image_seqlen}<|vision_eos|>").replace( | |
| "<audio>", f"<|audio_bos|>{'<|AUDIO|>' * audio_seqlen}<|audio_eos|>" | |
| ) | |
| ) | |
| for key, value in message.items() | |
| } | |
| for message in OMNI_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_omni_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |
| def test_qwen2_vl_plugin(): | |
| image_seqlen = 4 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct") | |
| qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>") | |
| check_inputs = {"plugin": qwen2_vl_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| { | |
| key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen)) | |
| for key, value in message.items() | |
| } | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |
| def test_video_llava_plugin(): | |
| image_seqlen = 256 | |
| tokenizer_module = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf") | |
| video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>") | |
| check_inputs = {"plugin": video_llava_plugin, **tokenizer_module} | |
| check_inputs["expected_mm_messages"] = [ | |
| {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()} | |
| for message in MM_MESSAGES | |
| ] | |
| check_inputs["expected_mm_inputs"] = _get_mm_inputs(tokenizer_module["processor"]) | |
| _check_plugin(**check_inputs) | |