Spaces:
Sleeping
Sleeping
question promt added
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from PIL import Image
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
|
| 7 |
|
| 8 |
-
def process_inputs(audio, option):
|
| 9 |
# Process inputs and return results
|
| 10 |
if option == "Translate":
|
| 11 |
generated_text = generate_text_from_audio(audio), None
|
|
@@ -18,7 +18,7 @@ def process_inputs(audio, option):
|
|
| 18 |
return "", text_classification(generated_text)
|
| 19 |
elif option == "Ask a Question":
|
| 20 |
generated_text = generate_text_from_audio(audio)
|
| 21 |
-
return ask_ques_from_text(generated_text), None
|
| 22 |
|
| 23 |
def generate_text_from_audio(audio):
|
| 24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
@@ -78,14 +78,14 @@ def text_classification(text):
|
|
| 78 |
return "classification_plot.png"
|
| 79 |
|
| 80 |
|
| 81 |
-
def ask_ques_from_text(text):
|
| 82 |
model_name = "deepset/roberta-base-squad2"
|
| 83 |
|
| 84 |
# Get predictions
|
| 85 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0)
|
| 86 |
|
| 87 |
QA_input = {
|
| 88 |
-
'question':
|
| 89 |
'context': text # Your context text from audio_text_result
|
| 90 |
}
|
| 91 |
|
|
@@ -98,9 +98,11 @@ demo = gr.Interface(
|
|
| 98 |
fn=process_inputs,
|
| 99 |
inputs=[
|
| 100 |
gr.Audio(label="Upload audio in .mp3 format", type="filepath"), # Audio input
|
| 101 |
-
gr.Dropdown(choices=["Translate", "Summarize", "text-classification", "Ask a Question"], label="Choose an Option")
|
|
|
|
| 102 |
],
|
| 103 |
outputs=[gr.Textbox(label="Result"), gr.Image(label="Classification Plot")],
|
| 104 |
)
|
| 105 |
|
|
|
|
| 106 |
demo.launch()
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
|
| 7 |
|
| 8 |
+
def process_inputs(audio, option, question=None):
|
| 9 |
# Process inputs and return results
|
| 10 |
if option == "Translate":
|
| 11 |
generated_text = generate_text_from_audio(audio), None
|
|
|
|
| 18 |
return "", text_classification(generated_text)
|
| 19 |
elif option == "Ask a Question":
|
| 20 |
generated_text = generate_text_from_audio(audio)
|
| 21 |
+
return ask_ques_from_text(generated_text, question), None
|
| 22 |
|
| 23 |
def generate_text_from_audio(audio):
|
| 24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 78 |
return "classification_plot.png"
|
| 79 |
|
| 80 |
|
| 81 |
+
def ask_ques_from_text(text, ques):
|
| 82 |
model_name = "deepset/roberta-base-squad2"
|
| 83 |
|
| 84 |
# Get predictions
|
| 85 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device=0)
|
| 86 |
|
| 87 |
QA_input = {
|
| 88 |
+
'question': ques,
|
| 89 |
'context': text # Your context text from audio_text_result
|
| 90 |
}
|
| 91 |
|
|
|
|
| 98 |
fn=process_inputs,
|
| 99 |
inputs=[
|
| 100 |
gr.Audio(label="Upload audio in .mp3 format", type="filepath"), # Audio input
|
| 101 |
+
gr.Dropdown(choices=["Translate", "Summarize", "text-classification", "Ask a Question"], label="Choose an Option"),
|
| 102 |
+
gr.Textbox(label="Enter your question if you chose Ask a question in dropdown", placeholder="Enter your question here", visible=True)
|
| 103 |
],
|
| 104 |
outputs=[gr.Textbox(label="Result"), gr.Image(label="Classification Plot")],
|
| 105 |
)
|
| 106 |
|
| 107 |
+
|
| 108 |
demo.launch()
|