Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import argparse, os | |
| import torch | |
| import requests | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from io import BytesIO | |
| from tqdm.auto import tqdm | |
| from matplotlib import pyplot as plt | |
| from torchvision import transforms as tfms | |
| from diffusers import ( | |
| StableDiffusionPipeline, | |
| DDIMScheduler, | |
| DiffusionPipeline, | |
| StableDiffusionXLPipeline, | |
| ) | |
| from diffusers.image_processor import VaeImageProcessor | |
| import torch | |
| import torch.nn as nn | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torchvision.utils import save_image | |
| import argparse | |
| import PIL.Image as Image | |
| from torchvision.utils import make_grid | |
| import numpy | |
| from diffusers.schedulers import DDIMScheduler | |
| import torch.nn.functional as F | |
| from models import attn_injection | |
| from omegaconf import OmegaConf | |
| from typing import List, Tuple | |
| import omegaconf | |
| import utils.exp_utils | |
| import json | |
| device = "cuda" | |
| def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device): | |
| # Tokenize text and get embeddings | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| with torch.no_grad(): | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| if prompt == "": | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| return negative_prompt_embeds, negative_pooled_prompt_embeds | |
| return prompt_embeds, pooled_prompt_embeds | |
| def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str): | |
| device = model._execution_device | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| ) = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device) | |
| ( | |
| prompt_embeds_2, | |
| pooled_prompt_embeds_2, | |
| ) = _get_text_embeddings(prompt, model.tokenizer_2, model.text_encoder_2, device) | |
| prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1) | |
| text_encoder_projection_dim = model.text_encoder_2.config.projection_dim | |
| add_time_ids = model._get_add_time_ids( | |
| (1024, 1024), (0, 0), (1024, 1024), torch.float16, text_encoder_projection_dim | |
| ).to(device) | |
| # repeat the time ids for each prompt | |
| add_time_ids = add_time_ids.repeat(len(prompt), 1) | |
| added_cond_kwargs = { | |
| "text_embeds": pooled_prompt_embeds_2, | |
| "time_ids": add_time_ids, | |
| } | |
| return added_cond_kwargs, prompt_embeds | |
| def _encode_text_sdxl_with_negative( | |
| model: StableDiffusionXLPipeline, prompt: List[str] | |
| ): | |
| B = len(prompt) | |
| added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt) | |
| added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl( | |
| model, ["" for _ in range(B)] | |
| ) | |
| prompt_embeds = torch.cat( | |
| ( | |
| prompt_embeds_uncond, | |
| prompt_embeds, | |
| ) | |
| ) | |
| added_cond_kwargs = { | |
| "text_embeds": torch.cat( | |
| (added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"]) | |
| ), | |
| "time_ids": torch.cat( | |
| (added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"]) | |
| ), | |
| } | |
| return added_cond_kwargs, prompt_embeds | |
| # Sample function (regular DDIM) | |
| def sample( | |
| pipe, | |
| prompt, | |
| start_step=0, | |
| start_latents=None, | |
| intermediate_latents=None, | |
| guidance_scale=3.5, | |
| num_inference_steps=30, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| negative_prompt="", | |
| device=device, | |
| ): | |
| negative_prompt = [""] * len(prompt) | |
| # Encode prompt | |
| if isinstance(pipe, StableDiffusionPipeline): | |
| text_embeddings = pipe._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ) | |
| added_cond_kwargs = None | |
| elif isinstance(pipe, StableDiffusionXLPipeline): | |
| added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative( | |
| pipe, prompt | |
| ) | |
| # Set num inference steps | |
| pipe.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # Create a random starting point if we don't have one already | |
| if start_latents is None: | |
| start_latents = torch.randn(1, 4, 64, 64, device=device) | |
| start_latents *= pipe.scheduler.init_noise_sigma | |
| latents = start_latents.clone() | |
| latents = latents.repeat(len(prompt), 1, 1, 1) | |
| # assume that the first latent is used for reconstruction | |
| for i in tqdm(range(start_step, num_inference_steps)): | |
| latents[0] = intermediate_latents[(-i + 1)] | |
| t = pipe.scheduler.timesteps[i] | |
| # Expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) | |
| # Predict the noise residual | |
| noise_pred = pipe.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| # Perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample | |
| # Post-processing | |
| images = pipe.decode_latents(latents) | |
| images = pipe.numpy_to_pil(images) | |
| return images | |
| # Sample function (regular DDIM), but disentangle the content and style | |
| def sample_disentangled( | |
| pipe, | |
| prompt, | |
| start_step=0, | |
| start_latents=None, | |
| intermediate_latents=None, | |
| guidance_scale=3.5, | |
| num_inference_steps=30, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| use_content_anchor=True, | |
| negative_prompt="", | |
| device=device, | |
| ): | |
| negative_prompt = [""] * len(prompt) | |
| vae_decoder = VaeImageProcessor(vae_scale_factor=pipe.vae.config.scaling_factor) | |
| # Encode prompt | |
| if isinstance(pipe, StableDiffusionPipeline): | |
| text_embeddings = pipe._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ) | |
| added_cond_kwargs = None | |
| elif isinstance(pipe, StableDiffusionXLPipeline): | |
| added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative( | |
| pipe, prompt | |
| ) | |
| # Set num inference steps | |
| pipe.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # save | |
| latent_shape = ( | |
| (1, 4, 64, 64) if isinstance(pipe, StableDiffusionPipeline) else (1, 4, 64, 64) | |
| ) | |
| generative_latent = torch.randn(latent_shape, device=device) | |
| generative_latent *= pipe.scheduler.init_noise_sigma | |
| latents = start_latents.clone() | |
| latents = latents.repeat(len(prompt), 1, 1, 1) | |
| # randomly initialize the 1st latent for generation | |
| latents[1] = generative_latent | |
| num_intermediate_latents = len(intermediate_latents) if intermediate_latents is not None else 0 | |
| for i in range(start_step, num_inference_steps): | |
| if use_content_anchor and intermediate_latents is not None: | |
| # Ensure that the index is within bounds | |
| if -i >= -num_intermediate_latents: | |
| latents[0] = intermediate_latents[-i] | |
| else: | |
| # Handle case when the index is out of bounds | |
| # You could use a default latent or skip this step | |
| latents[0] = intermediate_latents[0] # Example: use the first latent | |
| t = pipe.scheduler.timesteps[i] | |
| # Expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) | |
| # Predict the noise residual | |
| noise_pred = pipe.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| # Perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample | |
| # Post-processing | |
| # images = vae_decoder.postprocess(latents) | |
| pipe.vae.to(dtype=torch.float32) | |
| latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype) | |
| latents = 1 / pipe.vae.config.scaling_factor * latents | |
| images = pipe.vae.decode(latents, return_dict=False)[0] | |
| images = (images / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| images = images.cpu().permute(0, 2, 3, 1).float().numpy() | |
| images = pipe.numpy_to_pil(images) | |
| if isinstance(pipe, StableDiffusionXLPipeline): | |
| pipe.vae.to(dtype=torch.float16) | |
| return images | |
| ## Inversion | |
| def invert( | |
| pipe, | |
| start_latents, | |
| prompt, | |
| guidance_scale=3.5, | |
| num_inference_steps=50, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| negative_prompt="", | |
| device=device, | |
| ): | |
| # Encode prompt | |
| if isinstance(pipe, StableDiffusionPipeline): | |
| text_embeddings = pipe._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| ) | |
| added_cond_kwargs = None | |
| latents = start_latents.clone().detach() | |
| elif isinstance(pipe, StableDiffusionXLPipeline): | |
| added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative( | |
| pipe, [prompt] | |
| ) # Latents are now the specified start latents | |
| latents = start_latents.clone().detach().half() | |
| # We'll keep a list of the inverted latents as the process goes on | |
| intermediate_latents = [] | |
| # Set num inference steps | |
| pipe.scheduler.set_timesteps(num_inference_steps, device=device) | |
| # Reversed timesteps <<<<<<<<<<<<<<<<<<<< | |
| timesteps = list(reversed(pipe.scheduler.timesteps)) | |
| for i in range(num_inference_steps): | |
| if i >= num_inference_steps - 1: | |
| continue | |
| t = timesteps[i] | |
| # Expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) | |
| # Predict the noise residual | |
| noise_pred = pipe.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| # Perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| current_t = max(0, t.item() - (1000 // num_inference_steps)) # t | |
| next_t = t # min(999, t.item() + (1000 // num_inference_steps)) # t+1 | |
| alpha_t = pipe.scheduler.alphas_cumprod[current_t] | |
| alpha_t_next = pipe.scheduler.alphas_cumprod[next_t] | |
| # Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents) | |
| latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * ( | |
| alpha_t_next.sqrt() / alpha_t.sqrt() | |
| ) + (1 - alpha_t_next).sqrt() * noise_pred | |
| # Store | |
| intermediate_latents.append(latents) | |
| return torch.cat(intermediate_latents) | |
| def style_image_with_inversion( | |
| pipe, | |
| input_image, | |
| input_image_prompt, | |
| style_prompt, | |
| num_steps=100, | |
| start_step=30, | |
| guidance_scale=3.5, | |
| disentangle=False, | |
| share_attn=False, | |
| share_cross_attn=False, | |
| share_resnet_layers=[0, 1], | |
| share_attn_layers=[], | |
| c2s_layers=[0, 1], | |
| share_key=True, | |
| share_query=True, | |
| share_value=False, | |
| use_adain=True, | |
| use_content_anchor=True, | |
| output_dir: str = None, | |
| resnet_mode: str = None, | |
| return_intermediate=False, | |
| intermediate_latents=None, | |
| ): | |
| with torch.no_grad(): | |
| pipe.vae.to(dtype=torch.float32) | |
| latent = pipe.vae.encode(input_image.to(device) * 2 - 1) | |
| # latent = pipe.vae.encode(input_image.to(device)) | |
| l = pipe.vae.config.scaling_factor * latent.latent_dist.sample() | |
| if isinstance(pipe, StableDiffusionXLPipeline): | |
| pipe.vae.to(dtype=torch.float16) | |
| if intermediate_latents is None: | |
| inverted_latents = invert( | |
| pipe, l, input_image_prompt, num_inference_steps=num_steps | |
| ) | |
| else: | |
| inverted_latents = intermediate_latents | |
| attn_injection.register_attention_processors( | |
| pipe, | |
| base_dir=output_dir, | |
| resnet_mode=resnet_mode, | |
| attn_mode="artist" if disentangle else "pnp", | |
| disentangle=disentangle, | |
| share_resblock=True, | |
| share_attn=share_attn, | |
| share_cross_attn=share_cross_attn, | |
| share_resnet_layers=share_resnet_layers, | |
| share_attn_layers=share_attn_layers, | |
| share_key=share_key, | |
| share_query=share_query, | |
| share_value=share_value, | |
| use_adain=use_adain, | |
| c2s_layers=c2s_layers, | |
| ) | |
| if disentangle: | |
| final_im = sample_disentangled( | |
| pipe, | |
| style_prompt, | |
| start_latents=inverted_latents[-(start_step + 1)][None], | |
| intermediate_latents=inverted_latents, | |
| start_step=start_step, | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| use_content_anchor=use_content_anchor, | |
| ) | |
| else: | |
| final_im = sample( | |
| pipe, | |
| style_prompt, | |
| start_latents=inverted_latents[-(start_step + 1)][None], | |
| intermediate_latents=inverted_latents, | |
| start_step=start_step, | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| ) | |
| # unset the attention processors | |
| attn_injection.unset_attention_processors( | |
| pipe, | |
| unset_share_attn=True, | |
| unset_share_resblock=True, | |
| ) | |
| if return_intermediate: | |
| return final_im, inverted_latents | |
| return final_im | |
| if __name__ == "__main__": | |
| # pipe = DiffusionPipeline.from_pretrained( | |
| # # "playgroundai/playground-v2-1024px-aesthetic", | |
| # torch_dtype=torch.float16, | |
| # use_safetensors=True, | |
| # add_watermarker=False, | |
| # variant="fp16", | |
| # ) | |
| # pipe.to("cuda") | |
| parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf") | |
| parser.add_argument( | |
| "--config", type=str, default="config.yaml", help="Path to the config file" | |
| ) | |
| parser.add_argument( | |
| "--mode", | |
| type=str, | |
| default="dataset", | |
| choices=["dataset", "cli", "app"], | |
| help="Path to the config file", | |
| ) | |
| parser.add_argument( | |
| "--image_dir", type=str, default="test.png", help="Path to the image" | |
| ) | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| default="an impressionist painting", | |
| help="Stylization prompt", | |
| ) | |
| # mode = "single_control_content" | |
| args = parser.parse_args() | |
| config_dir = args.config | |
| mode = args.mode | |
| # mode = "dataset" | |
| out_name = ["content_delegation", "style_delegation", "style_out"] | |
| if mode == "app": | |
| # gradio | |
| import gradio as gr | |
| # Load a pipeline | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-2-1-base" | |
| ).to(device) | |
| # Set up a DDIM scheduler | |
| pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
| def style_transfer_app( | |
| prompt, | |
| image, | |
| cfg_scale=7.5, | |
| num_content_layers=4, | |
| num_style_layers=9, | |
| seed=0, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| utils.exp_utils.seed_all(seed) | |
| image = utils.exp_utils.process_image(image, device, 512) | |
| tgt_prompt = prompt | |
| src_prompt = "" | |
| prompt_in = [ | |
| "", # reconstruction | |
| tgt_prompt, # uncontrolled style | |
| "", # controlled style | |
| ] | |
| share_resnet_layers = ( | |
| list(range(num_content_layers)) if num_content_layers != 0 else None | |
| ) | |
| share_attn_layers = ( | |
| list(range(num_style_layers)) if num_style_layers != 0 else None | |
| ) | |
| imgs = style_image_with_inversion( | |
| pipe, | |
| image, | |
| src_prompt, | |
| style_prompt=prompt_in, | |
| num_steps=50, | |
| start_step=0, | |
| guidance_scale=cfg_scale, | |
| disentangle=True, | |
| resnet_mode="hidden", | |
| share_attn=True, | |
| share_cross_attn=True, | |
| share_resnet_layers=share_resnet_layers, | |
| share_attn_layers=share_attn_layers, | |
| share_key=True, | |
| share_query=True, | |
| share_value=False, | |
| use_content_anchor=True, | |
| use_adain=True, | |
| output_dir="./", | |
| ) | |
| return imgs[2] | |
| # load examples | |
| examples = [] | |
| annotation = json.load(open("data/example/annotation.json")) | |
| for entry in annotation: | |
| image = utils.exp_utils.get_processed_image( | |
| entry["image_path"], device, 512 | |
| ) | |
| image = transforms.ToPILImage()(image[0]) | |
| examples.append([entry["target_prompt"], image, None, None, None]) | |
| with gr.Blocks() as app: | |
| with gr.Column(): | |
| gr.Markdown("# Artist: Aesthetically Controllable Text-Driven Stylization without Training") | |
| gr.Markdown("## Interactive Demo, HF space version") | |
| gr.HTML(""" | |
| <div style="display:flex;column-gap:4px;"> | |
| <a href='https://diffusionartist.github.io/'> | |
| <img src='https://img.shields.io/badge/Project-Page-green'> | |
| </a> | |
| <a href='https://github.com/songrise/Artist'> | |
| <img src='https://img.shields.io/badge/Code-github-blue'> | |
| </a> | |
| <a href='https://arxiv.org/abs/2407.15842'> | |
| <img src='https://img.shields.io/badge/Paper-Arxiv-red'> | |
| </a> | |
| <a href='https://huggingface.co/papers/2407.15842'> | |
| <img src='https://img.shields.io/badge/Papers-HF-ffd21f'> | |
| </a> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image( | |
| label="Content image (will be resized to 512x512)", | |
| interactive=True, | |
| ) | |
| text_input = gr.Textbox( | |
| value="An impressionist painting", | |
| label="Text Prompt", | |
| info="Describe the style you want to apply to the image, do not include the description of the image content itself", | |
| lines=2, | |
| placeholder="Enter a text prompt", | |
| ) | |
| with gr.Accordion("Advanced settings"): | |
| with gr.Column(): | |
| cfg_slider = gr.Slider( | |
| 0, | |
| 15, | |
| value=7.5, | |
| label="Classifier Free Guidance (CFG) Scale", | |
| info="higher values give more style, 7.5 should be good for most cases", | |
| ) | |
| content_slider = gr.Slider( | |
| 0, | |
| 9, | |
| value=4, | |
| step=1, | |
| label="Number of content control layer", | |
| info="higher values make it more similar to original image. Default to control first 4 layers", | |
| ) | |
| style_slider = gr.Slider( | |
| 0, | |
| 9, | |
| value=9, | |
| step=1, | |
| label="Number of style control layer", | |
| info="higher values make it more similar to target style. Default to control first 9 layers, usually not necessary to change.", | |
| ) | |
| seed_slider = gr.Slider( | |
| 0, | |
| 100, | |
| value=0, | |
| step=1, | |
| label="Seed", | |
| info="Random seed for the model", | |
| ) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| image_output= gr.Image(format="png") | |
| gr.Examples( | |
| examples = examples, | |
| fn = style_transfer_app, | |
| inputs = [text_input, image_input], | |
| outputs = [image_output], | |
| cache_examples=False | |
| ) | |
| submit_btn.click( | |
| fn=style_transfer_app, | |
| inputs=[ | |
| text_input, | |
| image_input, | |
| cfg_slider, | |
| content_slider, | |
| style_slider, | |
| seed_slider, | |
| ], | |
| outputs=[image_output], | |
| show_api=False | |
| ) | |
| app.launch(show_api=False, show_error=True) | |