Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import argparse | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler | |
| from diffusers import DDPMScheduler | |
| from module.ip_adapter.utils import load_adapter_to_pipe | |
| from pipelines.sdxl_instantir import InstantIRPipeline | |
| def name_unet_submodules(unet): | |
| def recursive_find_module(name, module, end=False): | |
| if end: | |
| for sub_name, sub_module in module.named_children(): | |
| sub_module.full_name = f"{name}.{sub_name}" | |
| return | |
| if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return | |
| elif "resnets" in name: return | |
| for sub_name, sub_module in module.named_children(): | |
| end = True if sub_name == "transformer_blocks" else False | |
| recursive_find_module(f"{name}.{sub_name}", sub_module, end) | |
| for name, module in unet.named_children(): | |
| recursive_find_module(name, module) | |
| def resize_img(input_image, max_side=1280, min_side=1024, size=None, | |
| pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| # ratio = min_side / min(h, w) | |
| # w, h = round(ratio*w), round(ratio*h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| def tensor_to_pil(images): | |
| """ | |
| Convert image tensor or a batch of image tensors to PIL image(s). | |
| """ | |
| images = images.clamp(0, 1) | |
| images_np = images.detach().cpu().numpy() | |
| if images_np.ndim == 4: | |
| images_np = np.transpose(images_np, (0, 2, 3, 1)) | |
| elif images_np.ndim == 3: | |
| images_np = np.transpose(images_np, (1, 2, 0)) | |
| images_np = images_np[None, ...] | |
| images_np = (images_np * 255).round().astype("uint8") | |
| if images_np.shape[-1] == 1: | |
| # special case for grayscale (single channel) images | |
| pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np] | |
| else: | |
| pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np] | |
| return pil_images | |
| def calc_mean_std(feat, eps=1e-5): | |
| """Calculate mean and std for adaptive_instance_normalization. | |
| Args: | |
| feat (Tensor): 4D tensor. | |
| eps (float): A small value added to the variance to avoid | |
| divide-by-zero. Default: 1e-5. | |
| """ | |
| size = feat.size() | |
| assert len(size) == 4, 'The input feature should be 4D tensor.' | |
| b, c = size[:2] | |
| feat_var = feat.view(b, c, -1).var(dim=2) + eps | |
| feat_std = feat_var.sqrt().view(b, c, 1, 1) | |
| feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) | |
| return feat_mean, feat_std | |
| def adaptive_instance_normalization(content_feat, style_feat): | |
| size = content_feat.size() | |
| style_mean, style_std = calc_mean_std(style_feat) | |
| content_mean, content_std = calc_mean_std(content_feat) | |
| normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
| return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
| def main(args, device): | |
| # Load pretrained models. | |
| pipe = InstantIRPipeline.from_pretrained( | |
| args.sdxl_path, | |
| torch_dtype=torch.float16, | |
| ) | |
| # Image prompt projector. | |
| print("Loading LQ-Adapter...") | |
| load_adapter_to_pipe( | |
| pipe, | |
| args.adapter_model_path if args.adapter_model_path is not None else os.path.join(args.instantir_path, 'adapter.pt'), | |
| args.vision_encoder_path, | |
| use_clip_encoder=args.use_clip_encoder, | |
| ) | |
| # Prepare previewer | |
| previewer_lora_path = args.previewer_lora_path if args.previewer_lora_path is not None else args.instantir_path | |
| if previewer_lora_path is not None: | |
| lora_alpha = pipe.prepare_previewers(previewer_lora_path) | |
| print(f"use lora alpha {lora_alpha}") | |
| pipe.to(device=device, dtype=torch.float16) | |
| pipe.scheduler = DDPMScheduler.from_pretrained(args.sdxl_path, subfolder="scheduler") | |
| lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) | |
| # Load weights. | |
| print("Loading checkpoint...") | |
| pretrained_state_dict = torch.load(os.path.join(args.instantir_path, "aggregator.pt"), map_location="cpu") | |
| pipe.aggregator.load_state_dict(pretrained_state_dict) | |
| pipe.aggregator.to(device, dtype=torch.float16) | |
| #################### Restoration #################### | |
| post_fix = f"_{args.post_fix}" if args.post_fix else "" | |
| os.makedirs(f"{args.out_path}/{post_fix}", exist_ok=True) | |
| processed_imgs = os.listdir(os.path.join(args.out_path, post_fix)) | |
| lq_files = [] | |
| lq_batch = [] | |
| if os.path.isfile(args.test_path): | |
| all_inputs = [args.test_path.split("/")[-1]] | |
| else: | |
| all_inputs = os.listdir(args.test_path) | |
| all_inputs.sort() | |
| for file in all_inputs: | |
| if file in processed_imgs: | |
| print(f"Skip {file}") | |
| continue | |
| lq_batch.append(f"{file}") | |
| if len(lq_batch) == args.batch_size: | |
| lq_files.append(lq_batch) | |
| lq_batch = [] | |
| if len(lq_batch) > 0: | |
| lq_files.append(lq_batch) | |
| for lq_batch in lq_files: | |
| generator = torch.Generator(device=device).manual_seed(args.seed) | |
| pil_lqs = [Image.open(os.path.join(args.test_path, file)) for file in lq_batch] | |
| if args.width is None or args.height is None: | |
| lq = [resize_img(pil_lq.convert("RGB"), size=None) for pil_lq in pil_lqs] | |
| else: | |
| lq = [resize_img(pil_lq.convert("RGB"), size=(args.width, args.height)) for pil_lq in pil_lqs] | |
| timesteps = None | |
| if args.denoising_start < 1000: | |
| timesteps = [ | |
| i * (args.denoising_start//args.num_inference_steps) + pipe.scheduler.config.steps_offset for i in range(0, args.num_inference_steps) | |
| ] | |
| timesteps = timesteps[::-1] | |
| pipe.scheduler.set_timesteps(args.num_inference_steps, device) | |
| timesteps = pipe.scheduler.timesteps | |
| if args.prompt is None or len(args.prompt) == 0: | |
| prompt = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ | |
| ultra HD, extreme meticulous detailing, skin pore detailing, \ | |
| hyper sharpness, perfect without deformations, \ | |
| taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " | |
| else: | |
| prompt = args.prompt | |
| if not isinstance(prompt, list): | |
| prompt = [prompt] | |
| prompt = prompt*len(lq) | |
| if args.neg_prompt is None or len(args.neg_prompt) == 0: | |
| neg_prompt = "blurry, out of focus, unclear, depth of field, over-smooth, \ | |
| sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ | |
| dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ | |
| watermark, signature, jpeg artifacts, deformed, lowres" | |
| else: | |
| neg_prompt = args.neg_prompt | |
| if not isinstance(neg_prompt, list): | |
| neg_prompt = [neg_prompt] | |
| neg_prompt = neg_prompt*len(lq) | |
| image = pipe( | |
| prompt=prompt, | |
| image=lq, | |
| num_inference_steps=args.num_inference_steps, | |
| generator=generator, | |
| timesteps=timesteps, | |
| negative_prompt=neg_prompt, | |
| guidance_scale=args.cfg, | |
| previewer_scheduler=lcm_scheduler, | |
| preview_start=args.preview_start, | |
| control_guidance_end=args.creative_start, | |
| ).images | |
| if args.save_preview_row: | |
| for i, lcm_image in enumerate(image[1]): | |
| lcm_image.save(f"./lcm/{i}.png") | |
| for i, rec_image in enumerate(image): | |
| rec_image.save(f"{args.out_path}/{post_fix}/{lq_batch[i]}") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="InstantIR pipeline") | |
| parser.add_argument( | |
| "--sdxl_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--previewer_lora_path", | |
| type=str, | |
| default=None, | |
| help="Path to LCM lora or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--instantir_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained instantir model.", | |
| ) | |
| parser.add_argument( | |
| "--vision_encoder_path", | |
| type=str, | |
| default='/share/huangrenyuan/model_zoo/vis_backbone/dinov2_large', | |
| help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--adapter_model_path", | |
| type=str, | |
| default=None, | |
| help="Path to IP-Adapter models or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--adapter_tokens", | |
| type=int, | |
| default=64, | |
| help="Number of tokens to use in IP-adapter cross attention mechanism.", | |
| ) | |
| parser.add_argument( | |
| "--use_clip_encoder", | |
| action="store_true", | |
| help="Whether or not to use DINO as image encoder, else CLIP encoder.", | |
| ) | |
| parser.add_argument( | |
| "--denoising_start", | |
| type=int, | |
| default=1000, | |
| help="Diffusion start timestep." | |
| ) | |
| parser.add_argument( | |
| "--num_inference_steps", | |
| type=int, | |
| default=30, | |
| help="Diffusion steps." | |
| ) | |
| parser.add_argument( | |
| "--creative_start", | |
| type=float, | |
| default=1.0, | |
| help="Proportion of timesteps for creative restoration. 1.0 means no creative restoration while 0.0 means completely free rendering." | |
| ) | |
| parser.add_argument( | |
| "--preview_start", | |
| type=float, | |
| default=0.0, | |
| help="Proportion of timesteps to stop previewing at the begining to enhance fidelity to input." | |
| ) | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=1024, | |
| help="Number of tokens to use in IP-adapter cross attention mechanism.", | |
| ) | |
| parser.add_argument( | |
| "--batch_size", | |
| type=int, | |
| default=6, | |
| help="Test batch size." | |
| ) | |
| parser.add_argument( | |
| "--width", | |
| type=int, | |
| default=None, | |
| help="Output image width." | |
| ) | |
| parser.add_argument( | |
| "--height", | |
| type=int, | |
| default=None, | |
| help="Output image height." | |
| ) | |
| parser.add_argument( | |
| "--cfg", | |
| type=float, | |
| default=7.0, | |
| help="Scale of Classifier-Free-Guidance (CFG).", | |
| ) | |
| parser.add_argument( | |
| "--post_fix", | |
| type=str, | |
| default=None, | |
| help="Subfolder name for restoration output under the output directory.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default='fp16', | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--save_preview_row", | |
| action="store_true", | |
| help="Whether or not to save the intermediate lcm outputs.", | |
| ) | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| default='', | |
| nargs="+", | |
| help=( | |
| "A set of prompts for creative restoration. Provide either a matching number of test images," | |
| " or a single prompt to be used with all inputs." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--neg_prompt", | |
| type=str, | |
| default='', | |
| nargs="+", | |
| help=( | |
| "A set of negative prompts for creative restoration. Provide either a matching number of test images," | |
| " or a single negative prompt to be used with all inputs." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--test_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Test directory.", | |
| ) | |
| parser.add_argument( | |
| "--out_path", | |
| type=str, | |
| default="./output", | |
| help="Output directory.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| args = parser.parse_args() | |
| args.height = args.height or args.width | |
| args.width = args.width or args.height | |
| if args.height is not None and (args.width % 64 != 0 or args.height % 64 != 0): | |
| raise ValueError("Image resolution must be divisible by 64.") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| main(args, device) |