Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from diffusers.utils import BaseOutput, is_torch_version | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.models.activations import get_activation | |
| from diffusers.models.attention_processor import SpatialNorm | |
| from diffusers.models.unet_2d_blocks import ( | |
| AutoencoderTinyBlock, | |
| UNetMidBlock2D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| class DecoderOutput(BaseOutput): | |
| r""" | |
| Output of decoding method. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| The decoded output sample from the last layer of the model. | |
| """ | |
| sample: torch.FloatTensor | |
| class Encoder(nn.Module): | |
| r""" | |
| The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
| options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| double_z (`bool`, *optional*, defaults to `True`): | |
| Whether to double the number of output channels for the last block. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), | |
| block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| double_z: bool = True, | |
| mid_block_add_attention=True, | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| self.mid_block = None | |
| self.down_blocks = nn.ModuleList([]) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=self.layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| add_downsample=not is_final_block, | |
| resnet_eps=1e-6, | |
| downsample_padding=0, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| attention_head_dim=output_channel, | |
| temb_channels=None, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=1, | |
| resnet_time_scale_shift="default", | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| temb_channels=None, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| conv_out_channels = 2 * out_channels if double_z else out_channels | |
| self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
| self.gradient_checkpointing = False | |
| def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
| r"""The forward method of the `Encoder` class.""" | |
| sample = self.conv_in(sample) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| # down | |
| if is_torch_version(">=", "1.11.0"): | |
| for down_block in self.down_blocks: | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(down_block), sample, use_reentrant=False | |
| ) | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), sample, use_reentrant=False | |
| ) | |
| else: | |
| for down_block in self.down_blocks: | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) | |
| else: | |
| # down | |
| for down_block in self.down_blocks: | |
| sample = down_block(sample) | |
| # middle | |
| sample = self.mid_block(sample) | |
| # post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| return sample | |
| class Decoder(nn.Module): | |
| r""" | |
| The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| norm_type (`str`, *optional*, defaults to `"group"`): | |
| The normalization type to use. Can be either `"group"` or `"spatial"`. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
| block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| norm_type: str = "group", # group, spatial | |
| mid_block_add_attention=True, | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[-1], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| temb_channels = in_channels if norm_type == "spatial" else None | |
| # mid | |
| self.mid_block = UNetMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=1, | |
| resnet_time_scale_shift="default" if norm_type == "group" else norm_type, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| temb_channels=temb_channels, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=self.layers_per_block + 1, | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=None, | |
| add_upsample=not is_final_block, | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| attention_head_dim=output_channel, | |
| temb_channels=temb_channels, | |
| resnet_time_scale_shift=norm_type, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| if norm_type == "spatial": | |
| self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) | |
| else: | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| latent_embeds: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| r"""The forward method of the `Decoder` class.""" | |
| sample = self.conv_in(sample) | |
| sample = sample.to(torch.float32) | |
| upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), | |
| sample, | |
| latent_embeds, | |
| use_reentrant=False, | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(up_block), | |
| sample, | |
| latent_embeds, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), sample, latent_embeds | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) | |
| else: | |
| # middle | |
| sample = self.mid_block(sample, latent_embeds) | |
| sample = sample.to(upscale_dtype) | |
| # up | |
| for up_block in self.up_blocks: | |
| sample = up_block(sample, latent_embeds) | |
| # post-process | |
| if latent_embeds is None: | |
| sample = self.conv_norm_out(sample) | |
| else: | |
| sample = self.conv_norm_out(sample, latent_embeds) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| return sample | |
| class UpSample(nn.Module): | |
| r""" | |
| The `UpSample` layer of a variational autoencoder that upsamples its input. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| ) -> None: | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1) | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| r"""The forward method of the `UpSample` class.""" | |
| x = torch.relu(x) | |
| x = self.deconv(x) | |
| return x | |
| class MaskConditionEncoder(nn.Module): | |
| """ | |
| used in AsymmetricAutoencoderKL | |
| """ | |
| def __init__( | |
| self, | |
| in_ch: int, | |
| out_ch: int = 192, | |
| res_ch: int = 768, | |
| stride: int = 16, | |
| ) -> None: | |
| super().__init__() | |
| channels = [] | |
| while stride > 1: | |
| stride = stride // 2 | |
| in_ch_ = out_ch * 2 | |
| if out_ch > res_ch: | |
| out_ch = res_ch | |
| if stride == 1: | |
| in_ch_ = res_ch | |
| channels.append((in_ch_, out_ch)) | |
| out_ch *= 2 | |
| out_channels = [] | |
| for _in_ch, _out_ch in channels: | |
| out_channels.append(_out_ch) | |
| out_channels.append(channels[-1][0]) | |
| layers = [] | |
| in_ch_ = in_ch | |
| for l in range(len(out_channels)): | |
| out_ch_ = out_channels[l] | |
| if l == 0 or l == 1: | |
| layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1)) | |
| else: | |
| layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1)) | |
| in_ch_ = out_ch_ | |
| self.layers = nn.Sequential(*layers) | |
| def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor: | |
| r"""The forward method of the `MaskConditionEncoder` class.""" | |
| out = {} | |
| for l in range(len(self.layers)): | |
| layer = self.layers[l] | |
| x = layer(x) | |
| out[str(tuple(x.shape))] = x | |
| x = torch.relu(x) | |
| return out | |
| class MaskConditionDecoder(nn.Module): | |
| r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's | |
| decoder with a conditioner on the mask and masked image. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| norm_type (`str`, *optional*, defaults to `"group"`): | |
| The normalization type to use. Can be either `"group"` or `"spatial"`. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
| block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| norm_type: str = "group", # group, spatial | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[-1], | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| temb_channels = in_channels if norm_type == "spatial" else None | |
| # mid | |
| self.mid_block = UNetMidBlock2D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=1, | |
| resnet_time_scale_shift="default" if norm_type == "group" else norm_type, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| temb_channels=temb_channels, | |
| ) | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=self.layers_per_block + 1, | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=None, | |
| add_upsample=not is_final_block, | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| attention_head_dim=output_channel, | |
| temb_channels=temb_channels, | |
| resnet_time_scale_shift=norm_type, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # condition encoder | |
| self.condition_encoder = MaskConditionEncoder( | |
| in_ch=out_channels, | |
| out_ch=block_out_channels[0], | |
| res_ch=block_out_channels[-1], | |
| ) | |
| # out | |
| if norm_type == "spatial": | |
| self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) | |
| else: | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| z: torch.FloatTensor, | |
| image: Optional[torch.FloatTensor] = None, | |
| mask: Optional[torch.FloatTensor] = None, | |
| latent_embeds: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| r"""The forward method of the `MaskConditionDecoder` class.""" | |
| sample = z | |
| sample = self.conv_in(sample) | |
| upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), | |
| sample, | |
| latent_embeds, | |
| use_reentrant=False, | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # condition encoder | |
| if image is not None and mask is not None: | |
| masked_image = (1 - mask) * image | |
| im_x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.condition_encoder), | |
| masked_image, | |
| mask, | |
| use_reentrant=False, | |
| ) | |
| # up | |
| for up_block in self.up_blocks: | |
| if image is not None and mask is not None: | |
| sample_ = im_x[str(tuple(sample.shape))] | |
| mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
| sample = sample * mask_ + sample_ * (1 - mask_) | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(up_block), | |
| sample, | |
| latent_embeds, | |
| use_reentrant=False, | |
| ) | |
| if image is not None and mask is not None: | |
| sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
| else: | |
| # middle | |
| sample = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.mid_block), sample, latent_embeds | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| # condition encoder | |
| if image is not None and mask is not None: | |
| masked_image = (1 - mask) * image | |
| im_x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.condition_encoder), | |
| masked_image, | |
| mask, | |
| ) | |
| # up | |
| for up_block in self.up_blocks: | |
| if image is not None and mask is not None: | |
| sample_ = im_x[str(tuple(sample.shape))] | |
| mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
| sample = sample * mask_ + sample_ * (1 - mask_) | |
| sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) | |
| if image is not None and mask is not None: | |
| sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
| else: | |
| # middle | |
| sample = self.mid_block(sample, latent_embeds) | |
| sample = sample.to(upscale_dtype) | |
| # condition encoder | |
| if image is not None and mask is not None: | |
| masked_image = (1 - mask) * image | |
| im_x = self.condition_encoder(masked_image, mask) | |
| # up | |
| for up_block in self.up_blocks: | |
| if image is not None and mask is not None: | |
| sample_ = im_x[str(tuple(sample.shape))] | |
| mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") | |
| sample = sample * mask_ + sample_ * (1 - mask_) | |
| sample = up_block(sample, latent_embeds) | |
| if image is not None and mask is not None: | |
| sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) | |
| # post-process | |
| if latent_embeds is None: | |
| sample = self.conv_norm_out(sample) | |
| else: | |
| sample = self.conv_norm_out(sample, latent_embeds) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| return sample | |
| class VectorQuantizer(nn.Module): | |
| """ | |
| Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix | |
| multiplications and allows for post-hoc remapping of indices. | |
| """ | |
| # NOTE: due to a bug the beta term was applied to the wrong term. for | |
| # backwards compatibility we use the buggy version by default, but you can | |
| # specify legacy=False to fix it. | |
| def __init__( | |
| self, | |
| n_e: int, | |
| vq_embed_dim: int, | |
| beta: float, | |
| remap=None, | |
| unknown_index: str = "random", | |
| sane_index_shape: bool = False, | |
| legacy: bool = True, | |
| ): | |
| super().__init__() | |
| self.n_e = n_e | |
| self.vq_embed_dim = vq_embed_dim | |
| self.beta = beta | |
| self.legacy = legacy | |
| self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim) | |
| self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
| self.remap = remap | |
| if self.remap is not None: | |
| self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
| self.used: torch.Tensor | |
| self.re_embed = self.used.shape[0] | |
| self.unknown_index = unknown_index # "random" or "extra" or integer | |
| if self.unknown_index == "extra": | |
| self.unknown_index = self.re_embed | |
| self.re_embed = self.re_embed + 1 | |
| print( | |
| f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
| f"Using {self.unknown_index} for unknown indices." | |
| ) | |
| else: | |
| self.re_embed = n_e | |
| self.sane_index_shape = sane_index_shape | |
| def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor: | |
| ishape = inds.shape | |
| assert len(ishape) > 1 | |
| inds = inds.reshape(ishape[0], -1) | |
| used = self.used.to(inds) | |
| match = (inds[:, :, None] == used[None, None, ...]).long() | |
| new = match.argmax(-1) | |
| unknown = match.sum(2) < 1 | |
| if self.unknown_index == "random": | |
| new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) | |
| else: | |
| new[unknown] = self.unknown_index | |
| return new.reshape(ishape) | |
| def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor: | |
| ishape = inds.shape | |
| assert len(ishape) > 1 | |
| inds = inds.reshape(ishape[0], -1) | |
| used = self.used.to(inds) | |
| if self.re_embed > self.used.shape[0]: # extra token | |
| inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
| back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
| return back.reshape(ishape) | |
| def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]: | |
| # reshape z -> (batch, height, width, channel) and flatten | |
| z = z.permute(0, 2, 3, 1).contiguous() | |
| z_flattened = z.view(-1, self.vq_embed_dim) | |
| # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
| min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1) | |
| z_q = self.embedding(min_encoding_indices).view(z.shape) | |
| perplexity = None | |
| min_encodings = None | |
| # compute loss for embedding | |
| if not self.legacy: | |
| loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) | |
| else: | |
| loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) | |
| # preserve gradients | |
| z_q: torch.FloatTensor = z + (z_q - z).detach() | |
| # reshape back to match original input shape | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| if self.remap is not None: | |
| min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis | |
| min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
| min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
| if self.sane_index_shape: | |
| min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) | |
| return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
| def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor: | |
| # shape specifying (batch, height, width, channel) | |
| if self.remap is not None: | |
| indices = indices.reshape(shape[0], -1) # add batch axis | |
| indices = self.unmap_to_all(indices) | |
| indices = indices.reshape(-1) # flatten again | |
| # get quantized latent vectors | |
| z_q: torch.FloatTensor = self.embedding(indices) | |
| if shape is not None: | |
| z_q = z_q.view(shape) | |
| # reshape back to match original input shape | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| return z_q | |
| class DiagonalGaussianDistribution(object): | |
| def __init__(self, parameters: torch.Tensor, deterministic: bool = False): | |
| self.parameters = parameters | |
| self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
| self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
| self.deterministic = deterministic | |
| self.std = torch.exp(0.5 * self.logvar) | |
| self.var = torch.exp(self.logvar) | |
| if self.deterministic: | |
| self.var = self.std = torch.zeros_like( | |
| self.mean, device=self.parameters.device, dtype=self.parameters.dtype | |
| ) | |
| def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
| # make sure sample is on the same device as the parameters and has same dtype | |
| sample = randn_tensor( | |
| self.mean.shape, | |
| generator=generator, | |
| device=self.parameters.device, | |
| dtype=self.parameters.dtype, | |
| ) | |
| x = self.mean + self.std * sample | |
| return x | |
| def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: | |
| if self.deterministic: | |
| return torch.Tensor([0.0]) | |
| else: | |
| if other is None: | |
| return 0.5 * torch.sum( | |
| torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, | |
| dim=[1, 2, 3], | |
| ) | |
| else: | |
| return 0.5 * torch.sum( | |
| torch.pow(self.mean - other.mean, 2) / other.var | |
| + self.var / other.var | |
| - 1.0 | |
| - self.logvar | |
| + other.logvar, | |
| dim=[1, 2, 3], | |
| ) | |
| def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: | |
| if self.deterministic: | |
| return torch.Tensor([0.0]) | |
| logtwopi = np.log(2.0 * np.pi) | |
| return 0.5 * torch.sum( | |
| logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
| dim=dims, | |
| ) | |
| def mode(self) -> torch.Tensor: | |
| return self.mean | |
| class EncoderTiny(nn.Module): | |
| r""" | |
| The `EncoderTiny` layer is a simpler version of the `Encoder` layer. | |
| Args: | |
| in_channels (`int`): | |
| The number of input channels. | |
| out_channels (`int`): | |
| The number of output channels. | |
| num_blocks (`Tuple[int, ...]`): | |
| Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to | |
| use. | |
| block_out_channels (`Tuple[int, ...]`): | |
| The number of output channels for each block. | |
| act_fn (`str`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| num_blocks: Tuple[int, ...], | |
| block_out_channels: Tuple[int, ...], | |
| act_fn: str, | |
| ): | |
| super().__init__() | |
| layers = [] | |
| for i, num_block in enumerate(num_blocks): | |
| num_channels = block_out_channels[i] | |
| if i == 0: | |
| layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1)) | |
| else: | |
| layers.append( | |
| nn.Conv2d( | |
| num_channels, | |
| num_channels, | |
| kernel_size=3, | |
| padding=1, | |
| stride=2, | |
| bias=False, | |
| ) | |
| ) | |
| for _ in range(num_block): | |
| layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) | |
| layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1)) | |
| self.layers = nn.Sequential(*layers) | |
| self.gradient_checkpointing = False | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| r"""The forward method of the `EncoderTiny` class.""" | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) | |
| else: | |
| x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) | |
| else: | |
| # scale image from [-1, 1] to [0, 1] to match TAESD convention | |
| x = self.layers(x.add(1).div(2)) | |
| return x | |
| class DecoderTiny(nn.Module): | |
| r""" | |
| The `DecoderTiny` layer is a simpler version of the `Decoder` layer. | |
| Args: | |
| in_channels (`int`): | |
| The number of input channels. | |
| out_channels (`int`): | |
| The number of output channels. | |
| num_blocks (`Tuple[int, ...]`): | |
| Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to | |
| use. | |
| block_out_channels (`Tuple[int, ...]`): | |
| The number of output channels for each block. | |
| upsampling_scaling_factor (`int`): | |
| The scaling factor to use for upsampling. | |
| act_fn (`str`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| num_blocks: Tuple[int, ...], | |
| block_out_channels: Tuple[int, ...], | |
| upsampling_scaling_factor: int, | |
| act_fn: str, | |
| ): | |
| super().__init__() | |
| layers = [ | |
| nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1), | |
| get_activation(act_fn), | |
| ] | |
| for i, num_block in enumerate(num_blocks): | |
| is_final_block = i == (len(num_blocks) - 1) | |
| num_channels = block_out_channels[i] | |
| for _ in range(num_block): | |
| layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) | |
| if not is_final_block: | |
| layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor)) | |
| conv_out_channel = num_channels if not is_final_block else out_channels | |
| layers.append( | |
| nn.Conv2d( | |
| num_channels, | |
| conv_out_channel, | |
| kernel_size=3, | |
| padding=1, | |
| bias=is_final_block, | |
| ) | |
| ) | |
| self.layers = nn.Sequential(*layers) | |
| self.gradient_checkpointing = False | |
| def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
| r"""The forward method of the `DecoderTiny` class.""" | |
| # Clamp. | |
| x = torch.tanh(x / 3) * 3 | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) | |
| else: | |
| x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) | |
| else: | |
| x = self.layers(x) | |
| # scale image from [0, 1] to [-1, 1] to match diffusers convention | |
| return x.mul(2).sub(1) |