Spaces:
Running
on
Zero
Running
on
Zero
| # Modified from minSDXL by Simo Ryu: | |
| # https://github.com/cloneofsimo/minSDXL , | |
| # which is in turn modified from the original code of: | |
| # https://github.com/huggingface/diffusers | |
| # So has APACHE 2.0 license | |
| from typing import Optional, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| import inspect | |
| from collections import namedtuple | |
| from torch.fft import fftn, fftshift, ifftn, ifftshift | |
| from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0 | |
| # Implementation of FreeU for minsdxl | |
| def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor": | |
| """Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497). | |
| This version of the method comes from here: | |
| https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706 | |
| """ | |
| x = x_in | |
| B, C, H, W = x.shape | |
| # Non-power of 2 images must be float32 | |
| if (W & (W - 1)) != 0 or (H & (H - 1)) != 0: | |
| x = x.to(dtype=torch.float32) | |
| # FFT | |
| x_freq = fftn(x, dim=(-2, -1)) | |
| x_freq = fftshift(x_freq, dim=(-2, -1)) | |
| B, C, H, W = x_freq.shape | |
| mask = torch.ones((B, C, H, W), device=x.device) | |
| crow, ccol = H // 2, W // 2 | |
| mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale | |
| x_freq = x_freq * mask | |
| # IFFT | |
| x_freq = ifftshift(x_freq, dim=(-2, -1)) | |
| x_filtered = ifftn(x_freq, dim=(-2, -1)).real | |
| return x_filtered.to(dtype=x_in.dtype) | |
| def apply_freeu( | |
| resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs): | |
| """Applies the FreeU mechanism as introduced in https: | |
| //arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU. | |
| Args: | |
| resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied. | |
| hidden_states (`torch.Tensor`): Inputs to the underlying block. | |
| res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block. | |
| s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. | |
| s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. | |
| b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
| b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
| """ | |
| if resolution_idx == 0: | |
| num_half_channels = hidden_states.shape[1] // 2 | |
| hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"] | |
| res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"]) | |
| if resolution_idx == 1: | |
| num_half_channels = hidden_states.shape[1] // 2 | |
| hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"] | |
| res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"]) | |
| return hidden_states, res_hidden_states | |
| # Diffusers-style LoRA to keep everything in the min_sdxl.py file | |
| class LoRALinearLayer(nn.Module): | |
| r""" | |
| A linear layer that is used with LoRA. | |
| Parameters: | |
| in_features (`int`): | |
| Number of input features. | |
| out_features (`int`): | |
| Number of output features. | |
| rank (`int`, `optional`, defaults to 4): | |
| The rank of the LoRA layer. | |
| network_alpha (`float`, `optional`, defaults to `None`): | |
| The value of the network alpha used for stable learning and preventing underflow. This value has the same | |
| meaning as the `--network_alpha` option in the kohya-ss trainer script. See | |
| https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning | |
| device (`torch.device`, `optional`, defaults to `None`): | |
| The device to use for the layer's weights. | |
| dtype (`torch.dtype`, `optional`, defaults to `None`): | |
| The dtype to use for the layer's weights. | |
| """ | |
| def __init__( | |
| self, | |
| in_features: int, | |
| out_features: int, | |
| rank: int = 4, | |
| network_alpha: Optional[float] = None, | |
| device: Optional[Union[torch.device, str]] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| super().__init__() | |
| self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) | |
| self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) | |
| # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. | |
| # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning | |
| self.network_alpha = network_alpha | |
| self.rank = rank | |
| self.out_features = out_features | |
| self.in_features = in_features | |
| nn.init.normal_(self.down.weight, std=1 / rank) | |
| nn.init.zeros_(self.up.weight) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| orig_dtype = hidden_states.dtype | |
| dtype = self.down.weight.dtype | |
| down_hidden_states = self.down(hidden_states.to(dtype)) | |
| up_hidden_states = self.up(down_hidden_states) | |
| if self.network_alpha is not None: | |
| up_hidden_states *= self.network_alpha / self.rank | |
| return up_hidden_states.to(orig_dtype) | |
| class LoRACompatibleLinear(nn.Linear): | |
| """ | |
| A Linear layer that can be used with LoRA. | |
| """ | |
| def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.lora_layer = lora_layer | |
| def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]): | |
| self.lora_layer = lora_layer | |
| def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False): | |
| if self.lora_layer is None: | |
| return | |
| dtype, device = self.weight.data.dtype, self.weight.data.device | |
| w_orig = self.weight.data.float() | |
| w_up = self.lora_layer.up.weight.data.float() | |
| w_down = self.lora_layer.down.weight.data.float() | |
| if self.lora_layer.network_alpha is not None: | |
| w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank | |
| fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) | |
| if safe_fusing and torch.isnan(fused_weight).any().item(): | |
| raise ValueError( | |
| "This LoRA weight seems to be broken. " | |
| f"Encountered NaN values when trying to fuse LoRA weights for {self}." | |
| "LoRA weights will not be fused." | |
| ) | |
| self.weight.data = fused_weight.to(device=device, dtype=dtype) | |
| # we can drop the lora layer now | |
| self.lora_layer = None | |
| # offload the up and down matrices to CPU to not blow the memory | |
| self.w_up = w_up.cpu() | |
| self.w_down = w_down.cpu() | |
| self._lora_scale = lora_scale | |
| def _unfuse_lora(self): | |
| if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None): | |
| return | |
| fused_weight = self.weight.data | |
| dtype, device = fused_weight.dtype, fused_weight.device | |
| w_up = self.w_up.to(device=device).float() | |
| w_down = self.w_down.to(device).float() | |
| unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]) | |
| self.weight.data = unfused_weight.to(device=device, dtype=dtype) | |
| self.w_up = None | |
| self.w_down = None | |
| def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: | |
| if self.lora_layer is None: | |
| out = super().forward(hidden_states) | |
| return out | |
| else: | |
| out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states)) | |
| return out | |
| class Timesteps(nn.Module): | |
| def __init__(self, num_channels: int = 320): | |
| super().__init__() | |
| self.num_channels = num_channels | |
| def forward(self, timesteps): | |
| half_dim = self.num_channels // 2 | |
| exponent = -math.log(10000) * torch.arange( | |
| half_dim, dtype=torch.float32, device=timesteps.device | |
| ) | |
| exponent = exponent / (half_dim - 0.0) | |
| emb = torch.exp(exponent) | |
| emb = timesteps[:, None].float() * emb[None, :] | |
| sin_emb = torch.sin(emb) | |
| cos_emb = torch.cos(emb) | |
| emb = torch.cat([cos_emb, sin_emb], dim=-1) | |
| return emb | |
| class TimestepEmbedding(nn.Module): | |
| def __init__(self, in_features, out_features): | |
| super(TimestepEmbedding, self).__init__() | |
| self.linear_1 = nn.Linear(in_features, out_features, bias=True) | |
| self.act = nn.SiLU() | |
| self.linear_2 = nn.Linear(out_features, out_features, bias=True) | |
| def forward(self, sample): | |
| sample = self.linear_1(sample) | |
| sample = self.act(sample) | |
| sample = self.linear_2(sample) | |
| return sample | |
| class ResnetBlock2D(nn.Module): | |
| def __init__(self, in_channels, out_channels, conv_shortcut=True): | |
| super(ResnetBlock2D, self).__init__() | |
| self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True) | |
| self.conv1 = nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| self.time_emb_proj = nn.Linear(1280, out_channels, bias=True) | |
| self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True) | |
| self.dropout = nn.Dropout(p=0.0, inplace=False) | |
| self.conv2 = nn.Conv2d( | |
| out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| self.nonlinearity = nn.SiLU() | |
| self.conv_shortcut = None | |
| if conv_shortcut: | |
| self.conv_shortcut = nn.Conv2d( | |
| in_channels, out_channels, kernel_size=1, stride=1 | |
| ) | |
| def forward(self, input_tensor, temb): | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| temb = self.nonlinearity(temb) | |
| temb = self.time_emb_proj(temb)[:, :, None, None] | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = input_tensor + hidden_states | |
| return output_tensor | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True | |
| ): | |
| super(Attention, self).__init__() | |
| if num_heads is None: | |
| self.head_dim = 64 | |
| self.num_heads = inner_dim // self.head_dim | |
| else: | |
| self.num_heads = num_heads | |
| self.head_dim = inner_dim // num_heads | |
| self.scale = self.head_dim**-0.5 | |
| if cross_attention_dim is None: | |
| cross_attention_dim = inner_dim | |
| self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False) | |
| self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False) | |
| self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False) | |
| self.to_out = nn.ModuleList( | |
| [LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)] | |
| ) | |
| self.scale_qk = scale_qk | |
| if processor is None: | |
| processor = ( | |
| AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| **cross_attention_kwargs, | |
| ) -> torch.Tensor: | |
| r""" | |
| The forward method of the `Attention` class. | |
| Args: | |
| hidden_states (`torch.Tensor`): | |
| The hidden states of the query. | |
| encoder_hidden_states (`torch.Tensor`, *optional*): | |
| The hidden states of the encoder. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| The attention mask to use. If `None`, no mask is applied. | |
| **cross_attention_kwargs: | |
| Additional keyword arguments to pass along to the cross attention. | |
| Returns: | |
| `torch.Tensor`: The output of the attention layer. | |
| """ | |
| # The `Attention` class can call different attention processors / attention functions | |
| # here we simply pass along all tensors to the selected processor class | |
| # For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
| attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) | |
| unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters] | |
| if len(unused_kwargs) > 0: | |
| print( | |
| f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." | |
| ) | |
| cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} | |
| return self.processor( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| def orig_forward(self, hidden_states, encoder_hidden_states=None): | |
| q = self.to_q(hidden_states) | |
| k = ( | |
| self.to_k(encoder_hidden_states) | |
| if encoder_hidden_states is not None | |
| else self.to_k(hidden_states) | |
| ) | |
| v = ( | |
| self.to_v(encoder_hidden_states) | |
| if encoder_hidden_states is not None | |
| else self.to_v(hidden_states) | |
| ) | |
| b, t, c = q.size() | |
| q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2) | |
| k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2) | |
| v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2) | |
| # scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale | |
| # attn_weights = torch.softmax(scores, dim=-1) | |
| # attn_output = torch.matmul(attn_weights, v) | |
| attn_output = F.scaled_dot_product_attention( | |
| q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c) | |
| for layer in self.to_out: | |
| attn_output = layer(attn_output) | |
| return attn_output | |
| def set_processor(self, processor) -> None: | |
| r""" | |
| Set the attention processor to use. | |
| Args: | |
| processor (`AttnProcessor`): | |
| The attention processor to use. | |
| """ | |
| # if current processor is in `self._modules` and if passed `processor` is not, we need to | |
| # pop `processor` from `self._modules` | |
| if ( | |
| hasattr(self, "processor") | |
| and isinstance(self.processor, torch.nn.Module) | |
| and not isinstance(processor, torch.nn.Module) | |
| ): | |
| print(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
| self._modules.pop("processor") | |
| self.processor = processor | |
| def get_processor(self, return_deprecated_lora: bool = False): | |
| r""" | |
| Get the attention processor in use. | |
| Args: | |
| return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to return the deprecated LoRA attention processor. | |
| Returns: | |
| "AttentionProcessor": The attention processor in use. | |
| """ | |
| if not return_deprecated_lora: | |
| return self.processor | |
| # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
| # serialization format for LoRA Attention Processors. It should be deleted once the integration | |
| # with PEFT is completed. | |
| is_lora_activated = { | |
| name: module.lora_layer is not None | |
| for name, module in self.named_modules() | |
| if hasattr(module, "lora_layer") | |
| } | |
| # 1. if no layer has a LoRA activated we can return the processor as usual | |
| if not any(is_lora_activated.values()): | |
| return self.processor | |
| # If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
| is_lora_activated.pop("add_k_proj", None) | |
| is_lora_activated.pop("add_v_proj", None) | |
| # 2. else it is not possible that only some layers have LoRA activated | |
| if not all(is_lora_activated.values()): | |
| raise ValueError( | |
| f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
| ) | |
| # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
| non_lora_processor_cls_name = self.processor.__class__.__name__ | |
| lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
| hidden_size = self.inner_dim | |
| # now create a LoRA attention processor from the LoRA layers | |
| if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
| kwargs = { | |
| "cross_attention_dim": self.cross_attention_dim, | |
| "rank": self.to_q.lora_layer.rank, | |
| "network_alpha": self.to_q.lora_layer.network_alpha, | |
| "q_rank": self.to_q.lora_layer.rank, | |
| "q_hidden_size": self.to_q.lora_layer.out_features, | |
| "k_rank": self.to_k.lora_layer.rank, | |
| "k_hidden_size": self.to_k.lora_layer.out_features, | |
| "v_rank": self.to_v.lora_layer.rank, | |
| "v_hidden_size": self.to_v.lora_layer.out_features, | |
| "out_rank": self.to_out[0].lora_layer.rank, | |
| "out_hidden_size": self.to_out[0].lora_layer.out_features, | |
| } | |
| if hasattr(self.processor, "attention_op"): | |
| kwargs["attention_op"] = self.processor.attention_op | |
| lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
| lora_processor = lora_processor_cls( | |
| hidden_size, | |
| cross_attention_dim=self.add_k_proj.weight.shape[0], | |
| rank=self.to_q.lora_layer.rank, | |
| network_alpha=self.to_q.lora_layer.network_alpha, | |
| ) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| # only save if used | |
| if self.add_k_proj.lora_layer is not None: | |
| lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
| lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
| else: | |
| lora_processor.add_k_proj_lora = None | |
| lora_processor.add_v_proj_lora = None | |
| else: | |
| raise ValueError(f"{lora_processor_cls} does not exist.") | |
| return lora_processor | |
| class GEGLU(nn.Module): | |
| def __init__(self, in_features, out_features): | |
| super(GEGLU, self).__init__() | |
| self.proj = nn.Linear(in_features, out_features * 2, bias=True) | |
| def forward(self, x): | |
| x_proj = self.proj(x) | |
| x1, x2 = x_proj.chunk(2, dim=-1) | |
| return x1 * torch.nn.functional.gelu(x2) | |
| class FeedForward(nn.Module): | |
| def __init__(self, in_features, out_features): | |
| super(FeedForward, self).__init__() | |
| self.net = nn.ModuleList( | |
| [ | |
| GEGLU(in_features, out_features * 4), | |
| nn.Dropout(p=0.0, inplace=False), | |
| nn.Linear(out_features * 4, out_features, bias=True), | |
| ] | |
| ) | |
| def forward(self, x): | |
| for layer in self.net: | |
| x = layer(x) | |
| return x | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__(self, hidden_size): | |
| super(BasicTransformerBlock, self).__init__() | |
| self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) | |
| self.attn1 = Attention(hidden_size) | |
| self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) | |
| self.attn2 = Attention(hidden_size, 2048) | |
| self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True) | |
| self.ff = FeedForward(hidden_size, hidden_size) | |
| def forward(self, x, encoder_hidden_states=None): | |
| residual = x | |
| x = self.norm1(x) | |
| x = self.attn1(x) | |
| x = x + residual | |
| residual = x | |
| x = self.norm2(x) | |
| if encoder_hidden_states is not None: | |
| x = self.attn2(x, encoder_hidden_states) | |
| else: | |
| x = self.attn2(x) | |
| x = x + residual | |
| residual = x | |
| x = self.norm3(x) | |
| x = self.ff(x) | |
| x = x + residual | |
| return x | |
| class Transformer2DModel(nn.Module): | |
| def __init__(self, in_channels, out_channels, n_layers): | |
| super(Transformer2DModel, self).__init__() | |
| self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True) | |
| self.proj_in = nn.Linear(in_channels, out_channels, bias=True) | |
| self.transformer_blocks = nn.ModuleList( | |
| [BasicTransformerBlock(out_channels) for _ in range(n_layers)] | |
| ) | |
| self.proj_out = nn.Linear(out_channels, out_channels, bias=True) | |
| def forward(self, hidden_states, encoder_hidden_states=None): | |
| batch, _, height, width = hidden_states.shape | |
| res = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
| batch, height * width, inner_dim | |
| ) | |
| hidden_states = self.proj_in(hidden_states) | |
| for block in self.transformer_blocks: | |
| hidden_states = block(hidden_states, encoder_hidden_states) | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, width, inner_dim) | |
| .permute(0, 3, 1, 2) | |
| .contiguous() | |
| ) | |
| return hidden_states + res | |
| class Downsample2D(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super(Downsample2D, self).__init__() | |
| self.conv = nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=2, padding=1 | |
| ) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class Upsample2D(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super(Upsample2D, self).__init__() | |
| self.conv = nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, x): | |
| x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
| return self.conv(x) | |
| class DownBlock2D(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super(DownBlock2D, self).__init__() | |
| self.resnets = nn.ModuleList( | |
| [ | |
| ResnetBlock2D(in_channels, out_channels, conv_shortcut=False), | |
| ResnetBlock2D(out_channels, out_channels, conv_shortcut=False), | |
| ] | |
| ) | |
| self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)]) | |
| def forward(self, hidden_states, temb): | |
| output_states = [] | |
| for module in self.resnets: | |
| hidden_states = module(hidden_states, temb) | |
| output_states.append(hidden_states) | |
| hidden_states = self.downsamplers[0](hidden_states) | |
| output_states.append(hidden_states) | |
| return hidden_states, output_states | |
| class CrossAttnDownBlock2D(nn.Module): | |
| def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True): | |
| super(CrossAttnDownBlock2D, self).__init__() | |
| self.attentions = nn.ModuleList( | |
| [ | |
| Transformer2DModel(out_channels, out_channels, n_layers), | |
| Transformer2DModel(out_channels, out_channels, n_layers), | |
| ] | |
| ) | |
| self.resnets = nn.ModuleList( | |
| [ | |
| ResnetBlock2D(in_channels, out_channels), | |
| ResnetBlock2D(out_channels, out_channels, conv_shortcut=False), | |
| ] | |
| ) | |
| self.downsamplers = None | |
| if has_downsamplers: | |
| self.downsamplers = nn.ModuleList( | |
| [Downsample2D(out_channels, out_channels)] | |
| ) | |
| def forward(self, hidden_states, temb, encoder_hidden_states): | |
| output_states = [] | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| output_states.append(hidden_states) | |
| if self.downsamplers is not None: | |
| hidden_states = self.downsamplers[0](hidden_states) | |
| output_states.append(hidden_states) | |
| return hidden_states, output_states | |
| class CrossAttnUpBlock2D(nn.Module): | |
| def __init__(self, in_channels, out_channels, prev_output_channel, n_layers): | |
| super(CrossAttnUpBlock2D, self).__init__() | |
| self.attentions = nn.ModuleList( | |
| [ | |
| Transformer2DModel(out_channels, out_channels, n_layers), | |
| Transformer2DModel(out_channels, out_channels, n_layers), | |
| Transformer2DModel(out_channels, out_channels, n_layers), | |
| ] | |
| ) | |
| self.resnets = nn.ModuleList( | |
| [ | |
| ResnetBlock2D(prev_output_channel + out_channels, out_channels), | |
| ResnetBlock2D(2 * out_channels, out_channels), | |
| ResnetBlock2D(out_channels + in_channels, out_channels), | |
| ] | |
| ) | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)]) | |
| def forward( | |
| self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |
| class UpBlock2D(nn.Module): | |
| def __init__(self, in_channels, out_channels, prev_output_channel): | |
| super(UpBlock2D, self).__init__() | |
| self.resnets = nn.ModuleList( | |
| [ | |
| ResnetBlock2D(out_channels + prev_output_channel, out_channels), | |
| ResnetBlock2D(out_channels * 2, out_channels), | |
| ResnetBlock2D(out_channels + in_channels, out_channels), | |
| ] | |
| ) | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None): | |
| is_freeu_enabled = ( | |
| getattr(self, "s1", None) | |
| and getattr(self, "s2", None) | |
| and getattr(self, "b1", None) | |
| and getattr(self, "b2", None) | |
| and getattr(self, "resolution_idx", None) | |
| ) | |
| for resnet in self.resnets: | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| if is_freeu_enabled: | |
| hidden_states, res_hidden_states = apply_freeu( | |
| self.resolution_idx, | |
| hidden_states, | |
| res_hidden_states, | |
| s1=self.s1, | |
| s2=self.s2, | |
| b1=self.b1, | |
| b2=self.b2, | |
| ) | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class UNetMidBlock2DCrossAttn(nn.Module): | |
| def __init__(self, in_features): | |
| super(UNetMidBlock2DCrossAttn, self).__init__() | |
| self.attentions = nn.ModuleList( | |
| [Transformer2DModel(in_features, in_features, n_layers=10)] | |
| ) | |
| self.resnets = nn.ModuleList( | |
| [ | |
| ResnetBlock2D(in_features, in_features, conv_shortcut=False), | |
| ResnetBlock2D(in_features, in_features, conv_shortcut=False), | |
| ] | |
| ) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class UNet2DConditionModel(nn.Module): | |
| def __init__(self): | |
| super(UNet2DConditionModel, self).__init__() | |
| # This is needed to imitate huggingface config behavior | |
| # has nothing to do with the model itself | |
| # remove this if you don't use diffuser's pipeline | |
| self.config = namedtuple( | |
| "config", "in_channels addition_time_embed_dim sample_size" | |
| ) | |
| self.config.in_channels = 4 | |
| self.config.addition_time_embed_dim = 256 | |
| self.config.sample_size = 128 | |
| self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1) | |
| self.time_proj = Timesteps() | |
| self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280) | |
| self.add_time_proj = Timesteps(256) | |
| self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280) | |
| self.down_blocks = nn.ModuleList( | |
| [ | |
| DownBlock2D(in_channels=320, out_channels=320), | |
| CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2), | |
| CrossAttnDownBlock2D( | |
| in_channels=640, | |
| out_channels=1280, | |
| n_layers=10, | |
| has_downsamplers=False, | |
| ), | |
| ] | |
| ) | |
| self.up_blocks = nn.ModuleList( | |
| [ | |
| CrossAttnUpBlock2D( | |
| in_channels=640, | |
| out_channels=1280, | |
| prev_output_channel=1280, | |
| n_layers=10, | |
| ), | |
| CrossAttnUpBlock2D( | |
| in_channels=320, | |
| out_channels=640, | |
| prev_output_channel=1280, | |
| n_layers=2, | |
| ), | |
| UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640), | |
| ] | |
| ) | |
| self.mid_block = UNetMidBlock2DCrossAttn(1280) | |
| self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1) | |
| def forward( | |
| self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs | |
| ): | |
| # Implement the forward pass through the model | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps).to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb) | |
| text_embeds = added_cond_kwargs.get("text_embeds") | |
| time_ids = added_cond_kwargs.get("time_ids") | |
| time_embeds = self.add_time_proj(time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
| add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
| add_embeds = add_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(add_embeds) | |
| emb = emb + aug_emb | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| s0 = sample | |
| sample, [s1, s2, s3] = self.down_blocks[0]( | |
| sample, | |
| temb=emb, | |
| ) | |
| sample, [s4, s5, s6] = self.down_blocks[1]( | |
| sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| sample, [s7, s8] = self.down_blocks[2]( | |
| sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| # 4. mid | |
| sample = self.mid_block( | |
| sample, emb, encoder_hidden_states=encoder_hidden_states | |
| ) | |
| # 5. up | |
| sample = self.up_blocks[0]( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=[s6, s7, s8], | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| sample = self.up_blocks[1]( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=[s3, s4, s5], | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| sample = self.up_blocks[2]( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=[s0, s1, s2], | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| return [sample] |