Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import contextlib | |
| import time | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import jsonlines | |
| import functools | |
| import shutil | |
| import pyrallis | |
| import itertools | |
| from pathlib import Path | |
| from collections import namedtuple, OrderedDict | |
| import accelerate | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
| from datasets import load_dataset | |
| from packaging import version | |
| from PIL import Image | |
| from data.data_config import DataConfig | |
| from basicsr.utils.degradation_pipeline import RealESRGANDegradation | |
| from losses.loss_config import LossesConfig | |
| from losses.losses import * | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import crop | |
| from tqdm.auto import tqdm | |
| from transformers import ( | |
| AutoTokenizer, | |
| PretrainedConfig, | |
| CLIPImageProcessor, CLIPVisionModelWithProjection, | |
| AutoImageProcessor, AutoModel) | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| AutoencoderTiny, | |
| DDPMScheduler, | |
| StableDiffusionXLPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version, is_wandb_available, make_image_grid | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler | |
| from utils.train_utils import ( | |
| seperate_ip_params_from_unet, | |
| import_model_class_from_model_name_or_path, | |
| tensor_to_pil, | |
| get_train_dataset, prepare_train_dataset, collate_fn, | |
| encode_prompt, importance_sampling_fn, extract_into_tensor | |
| ) | |
| from module.ip_adapter.resampler import Resampler | |
| from module.ip_adapter.attention_processor import init_attn_proc | |
| from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds | |
| if is_wandb_available(): | |
| import wandb | |
| logger = get_logger(__name__) | |
| def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| scheduler, image_encoder, image_processor, deg_pipeline, | |
| args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False): | |
| logger.info("Running validation... ") | |
| image_logs = [] | |
| lq = [Image.open(lq_example) for lq_example in args.validation_image] | |
| pipe = StableDiffusionXLPipeline( | |
| vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| unet, scheduler, image_encoder, image_processor, | |
| ).to(accelerator.device) | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| image = pipe( | |
| prompt=[""]*len(lq), | |
| ip_adapter_image=[lq], | |
| num_inference_steps=20, | |
| generator=generator, | |
| guidance_scale=5.0, | |
| height=args.resolution, | |
| width=args.resolution, | |
| ).images | |
| if log_local: | |
| for i, img in enumerate(tensor_to_pil(lq_img)): | |
| img.save(f"./lq_{i}.png") | |
| for i, img in enumerate(tensor_to_pil(gt_img)): | |
| img.save(f"./gt_{i}.png") | |
| for i, img in enumerate(image): | |
| img.save(f"./lq_IPA_{i}.png") | |
| return | |
| tracker_key = "test" if is_final_validation else "validation" | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| images = [np.asarray(pil_img) for pil_img in image] | |
| images = np.stack(images, axis=0) | |
| if lq_img is not None and gt_img is not None: | |
| input_lq = lq_img.detach().cpu() | |
| input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1)) | |
| input_gt = gt_img.detach().cpu() | |
| input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1)) | |
| tracker.writer.add_images("lq", input_lq[0], step, dataformats="CHW") | |
| tracker.writer.add_images("gt", input_gt[0], step, dataformats="CHW") | |
| tracker.writer.add_images("rec", images, step, dataformats="NHWC") | |
| elif tracker.name == "wandb": | |
| raise NotImplementedError("Wandb logging not implemented for validation.") | |
| formatted_images = [] | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
| for image in images: | |
| image = wandb.Image(image, caption=validation_prompt) | |
| formatted_images.append(image) | |
| tracker.log({tracker_key: formatted_images}) | |
| else: | |
| logger.warning(f"image logging not implemented for {tracker.name}") | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return image_logs | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="InstantIR stage-1 training.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--feature_extractor_path", | |
| type=str, | |
| default=None, | |
| help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_adapter_model_path", | |
| type=str, | |
| default=None, | |
| help="Path to IP-Adapter models or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--adapter_tokens", | |
| type=int, | |
| default=64, | |
| help="Number of tokens to use in IP-adapter cross attention mechanism.", | |
| ) | |
| parser.add_argument( | |
| "--use_clip_encoder", | |
| action="store_true", | |
| help="Whether or not to use DINO as image encoder, else CLIP encoder.", | |
| ) | |
| parser.add_argument( | |
| "--image_encoder_hidden_feature", | |
| action="store_true", | |
| help="Whether or not to use the penultimate hidden states as image embeddings.", | |
| ) | |
| parser.add_argument( | |
| "--losses_config_path", | |
| type=str, | |
| required=True, | |
| default='config_files/losses.yaml' | |
| help=("A yaml file containing losses to use and their weights."), | |
| ) | |
| parser.add_argument( | |
| "--data_config_path", | |
| type=str, | |
| default='config_files/IR_dataset.yaml', | |
| help=("A folder containing the training data. "), | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="stage1_model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_h", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_w", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=2000, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
| "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
| "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
| "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
| "instructions." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=5, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--save_only_adapter", | |
| action="store_true", | |
| help="Only save extra adapter to save space.", | |
| ) | |
| parser.add_argument( | |
| "--importance_sampling", | |
| action="store_true", | |
| help="Whether or not to use importance sampling.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
| ) | |
| parser.add_argument( | |
| "--conditioning_image_column", | |
| type=str, | |
| default="conditioning_image", | |
| help="The column of the dataset containing the controlnet conditioning image.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--text_drop_rate", | |
| type=float, | |
| default=0.05, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--image_drop_rate", | |
| type=float, | |
| default=0.05, | |
| help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).", | |
| ) | |
| parser.add_argument( | |
| "--cond_drop_rate", | |
| type=float, | |
| default=0.05, | |
| help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).", | |
| ) | |
| parser.add_argument( | |
| "--sanity_check", | |
| action="store_true", | |
| help=( | |
| "sanity check" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
| " Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
| " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_image", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
| " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
| " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
| " `--validation_image` that will be used with all `--validation_prompt`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=4, | |
| help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=3000, | |
| help=( | |
| "Run validation every X steps. Validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`" | |
| " and logging the images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="instantir_stage1", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| # if args.dataset_name is None and args.train_data_dir is None and args.data_config_path is None: | |
| # raise ValueError("Specify either `--dataset_name` or `--train_data_dir`") | |
| if args.dataset_name is not None and args.train_data_dir is not None: | |
| raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") | |
| if args.text_drop_rate < 0 or args.text_drop_rate > 1: | |
| raise ValueError("`--text_drop_rate` must be in the range [0, 1].") | |
| if args.validation_prompt is not None and args.validation_image is None: | |
| raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
| if args.validation_prompt is None and args.validation_image is not None: | |
| raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
| if ( | |
| args.validation_image is not None | |
| and args.validation_prompt is not None | |
| and len(args.validation_image) != 1 | |
| and len(args.validation_prompt) != 1 | |
| and len(args.validation_image) != len(args.validation_prompt) | |
| ): | |
| raise ValueError( | |
| "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
| " or the same number of `--validation_prompt`s and `--validation_image`s" | |
| ) | |
| if args.resolution % 8 != 0: | |
| raise ValueError( | |
| "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." | |
| ) | |
| return args | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| # kwargs_handlers=[kwargs], | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation. | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| # Importance sampling. | |
| list_of_candidates = np.arange(noise_scheduler.config.num_train_timesteps, dtype='float64') | |
| prob_dist = importance_sampling_fn(list_of_candidates, noise_scheduler.config.num_train_timesteps, 0.5) | |
| importance_ratio = prob_dist / prob_dist.sum() * noise_scheduler.config.num_train_timesteps | |
| importance_ratio = torch.from_numpy(importance_ratio.copy()).float() | |
| # Load the tokenizers | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| tokenizer_2 = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer_2", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| # Text encoder and image encoder. | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision | |
| ) | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
| ) | |
| text_encoder = text_encoder_cls_one.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
| ) | |
| text_encoder_2 = text_encoder_cls_two.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
| ) | |
| if args.use_clip_encoder: | |
| image_processor = CLIPImageProcessor() | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path) | |
| else: | |
| image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path) | |
| image_encoder = AutoModel.from_pretrained(args.feature_extractor_path) | |
| # VAE. | |
| vae_path = ( | |
| args.pretrained_model_name_or_path | |
| if args.pretrained_vae_model_name_or_path is None | |
| else args.pretrained_vae_model_name_or_path | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| # UNet. | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="unet", | |
| revision=args.revision, | |
| variant=args.variant | |
| ) | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| unet=unet, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| vae=vae, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| variant=args.variant | |
| ) | |
| # Resampler for project model in IP-Adapter | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=args.adapter_tokens, | |
| embedding_dim=image_encoder.config.hidden_size, | |
| output_dim=unet.config.cross_attention_dim, | |
| ff_mult=4 | |
| ) | |
| init_adapter_in_unet( | |
| unet, | |
| image_proj_model, | |
| os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'), | |
| adapter_tokens=args.adapter_tokens, | |
| ) | |
| # Initialize training state. | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| text_encoder_2.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if args.save_only_adapter: | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| for model in models: | |
| if isinstance(model, type(unwrap_model(unet))): # save adapter only | |
| adapter_state_dict = OrderedDict() | |
| adapter_state_dict["image_proj"] = model.encoder_hid_proj.image_projection_layers[0].state_dict() | |
| adapter_state_dict["ip_adapter"] = torch.nn.ModuleList(model.attn_processors.values()).state_dict() | |
| torch.save(adapter_state_dict, os.path.join(output_dir, "adapter_ckpt.pt")) | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| while len(models) > 0: | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| if isinstance(model, type(accelerator.unwrap_model(unet))): | |
| adapter_state_dict = torch.load(os.path.join(input_dir, "adapter_ckpt.pt"), map_location="cpu") | |
| if list(adapter_state_dict.keys()) != ["image_proj", "ip_adapter"]: | |
| from module.ip_adapter.utils import revise_state_dict | |
| adapter_state_dict = revise_state_dict(adapter_state_dict) | |
| model.encoder_hid_proj.image_projection_layers[0].load_state_dict(adapter_state_dict["image_proj"], strict=True) | |
| missing, unexpected = torch.nn.ModuleList(model.attn_processors.values()).load_state_dict(adapter_state_dict["ip_adapter"], strict=False) | |
| if len(unexpected) > 0: | |
| raise ValueError(f"Unexpected keys: {unexpected}") | |
| if len(missing) > 0: | |
| for mk in missing: | |
| if "ln" not in mk: | |
| raise ValueError(f"Missing keys: {missing}") | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| vae.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation. | |
| ip_params, non_ip_params = seperate_ip_params_from_unet(unet) | |
| params_to_optimize = ip_params | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Instantiate Loss. | |
| losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r")) | |
| diffusion_losses = list() | |
| for loss_config in losses_configs.diffusion_losses: | |
| logger.info(f"Loading diffusion loss: {loss_config.name}") | |
| loss = namedtuple("loss", ["loss", "weight"]) | |
| loss_class = eval(loss_config.name) | |
| diffusion_losses.append(loss(loss_class(visualize_every_k=loss_config.visualize_every_k, | |
| dtype=weight_dtype, | |
| accelerator=accelerator, | |
| **loss_config.init_params), weight=loss_config.weight)) | |
| # SDXL additional condition that will be added to time embedding. | |
| def compute_time_ids(original_size, crops_coords_top_left): | |
| # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
| target_size = (args.resolution, args.resolution) | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_time_ids = torch.tensor([add_time_ids]) | |
| add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) | |
| return add_time_ids | |
| # Text prompt embeddings. | |
| def compute_embeddings(batch, text_encoders, tokenizers, drop_idx=None, is_train=True): | |
| prompt_batch = batch[args.caption_column] | |
| if drop_idx is not None: | |
| for i in range(len(prompt_batch)): | |
| prompt_batch[i] = "" if drop_idx[i] else prompt_batch[i] | |
| prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
| prompt_batch, text_encoders, tokenizers, is_train | |
| ) | |
| add_time_ids = torch.cat( | |
| [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] | |
| ) | |
| prompt_embeds = prompt_embeds.to(accelerator.device) | |
| pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) | |
| add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) | |
| sdxl_added_cond_kwargs = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids} | |
| return prompt_embeds, sdxl_added_cond_kwargs | |
| # Move pixels into latents. | |
| def convert_to_latent(pixels): | |
| model_input = vae.encode(pixels).latent_dist.sample() | |
| model_input = model_input * vae.config.scaling_factor | |
| if args.pretrained_vae_model_name_or_path is None: | |
| model_input = model_input.to(weight_dtype) | |
| return model_input | |
| # Datasets and other data moduels. | |
| deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution) | |
| compute_embeddings_fn = functools.partial( | |
| compute_embeddings, | |
| text_encoders=[text_encoder, text_encoder_2], | |
| tokenizers=[tokenizer, tokenizer_2], | |
| is_train=True, | |
| ) | |
| datasets = [] | |
| datasets_name = [] | |
| datasets_weights = [] | |
| if args.data_config_path is not None: | |
| data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r")) | |
| for single_dataset in data_config.datasets: | |
| datasets_weights.append(single_dataset.dataset_weight) | |
| datasets_name.append(single_dataset.dataset_folder) | |
| dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder) | |
| image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator) | |
| image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline) | |
| datasets.append(image_dataset) | |
| # TODO: Validation dataset | |
| if data_config.val_dataset is not None: | |
| val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator) | |
| logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}") | |
| # Mix training datasets. | |
| sampler_train = None | |
| if len(datasets) == 1: | |
| train_dataset = datasets[0] | |
| else: | |
| # Weighted each dataset | |
| train_dataset = torch.utils.data.ConcatDataset(datasets) | |
| dataset_weights = [] | |
| for single_dataset, single_weight in zip(datasets, datasets_weights): | |
| dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset)) | |
| sampler_train = torch.utils.data.WeightedRandomSampler( | |
| weights=dataset_weights, | |
| num_samples=len(dataset_weights) | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| sampler=sampler_train, | |
| shuffle=True if sampler_train is None else False, | |
| collate_fn=collate_fn, | |
| num_workers=args.dataloader_num_workers | |
| ) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| # tensorboard cannot handle list types for config | |
| tracker_config.pop("validation_prompt") | |
| tracker_config.pop("validation_image") | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # Move vae, unet and text_encoder to device and cast to weight_dtype | |
| if args.pretrained_vae_model_name_or_path is None: | |
| # The VAE is fp32 to avoid NaN losses. | |
| vae.to(accelerator.device, dtype=torch.float32) | |
| else: | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_2.to(accelerator.device, dtype=weight_dtype) | |
| image_encoder.to(accelerator.device, dtype=weight_dtype) | |
| importance_ratio = importance_ratio.to(accelerator.device) | |
| for non_ip_param in non_ip_params: | |
| non_ip_param.data = non_ip_param.data.to(dtype=weight_dtype) | |
| for ip_param in ip_params: | |
| ip_param.requires_grad_(True) | |
| unet.to(accelerator.device) | |
| # Final check. | |
| for n, p in unet.named_parameters(): | |
| if p.requires_grad: assert p.dtype == torch.float32, n | |
| else: assert p.dtype == weight_dtype, n | |
| if args.sanity_check: | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| # Check input data | |
| batch = next(iter(train_dataloader)) | |
| lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) | |
| images_log = log_validation( | |
| unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| noise_scheduler, image_encoder, image_processor, deg_pipeline, | |
| args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True | |
| ) | |
| exit() | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Optimization steps per epoch = {num_update_steps_per_epoch}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| trainable_models = [unet] | |
| if args.gradient_checkpointing: | |
| checkpoint_models = [] | |
| else: | |
| checkpoint_models = [] | |
| image_logs = None | |
| tic = time.time() | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| for step, batch in enumerate(train_dataloader): | |
| toc = time.time() | |
| io_time = toc - tic | |
| tic = toc | |
| for model in trainable_models + checkpoint_models: | |
| model.train() | |
| with accelerator.accumulate(*trainable_models): | |
| loss = torch.tensor(0.0) | |
| # Drop conditions. | |
| rand_tensor = torch.rand(batch["images"].shape[0]) | |
| drop_image_idx = rand_tensor < args.image_drop_rate | |
| drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate) | |
| drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate) | |
| drop_image_idx = drop_image_idx | drop_both_idx | |
| drop_text_idx = drop_text_idx | drop_both_idx | |
| # Get LQ embeddings | |
| with torch.no_grad(): | |
| lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) | |
| lq_pt = image_processor( | |
| images=lq_img*0.5+0.5, | |
| do_rescale=False, return_tensors="pt" | |
| ).pixel_values | |
| image_embeds = prepare_training_image_embeds( | |
| image_encoder, image_processor, | |
| ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, | |
| device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature, | |
| idx_to_replace=drop_image_idx | |
| ) | |
| # Process text inputs. | |
| prompt_embeds_input, added_conditions = compute_embeddings_fn(batch, drop_idx=drop_text_idx) | |
| added_conditions["image_embeds"] = image_embeds | |
| # Move inputs to latent space. | |
| gt_img = gt_img.to(dtype=vae.dtype) | |
| model_input = convert_to_latent(gt_img) | |
| if args.pretrained_vae_model_name_or_path is None: | |
| model_input = model_input.to(weight_dtype) | |
| # Sample noise that we'll add to the latents. | |
| noise = torch.randn_like(model_input) | |
| bsz = model_input.shape[0] | |
| # Sample a random timestep for each image. | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device) | |
| # Add noise to the model input according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) | |
| loss_weights = extract_into_tensor(importance_ratio, timesteps, noise.shape) if args.importance_sampling else None | |
| toc = time.time() | |
| prepare_time = toc - tic | |
| tic = time.time() | |
| model_pred = unet( | |
| noisy_model_input, timesteps, | |
| encoder_hidden_states=prompt_embeds_input, | |
| added_cond_kwargs=added_conditions, | |
| return_dict=False | |
| )[0] | |
| diffusion_loss_arguments = { | |
| "target": noise, | |
| "predict": model_pred, | |
| "prompt_embeddings_input": prompt_embeds_input, | |
| "timesteps": timesteps, | |
| "weights": loss_weights, | |
| } | |
| loss_dict = dict() | |
| for loss_config in diffusion_losses: | |
| non_weighted_loss = loss_config.loss(**diffusion_loss_arguments, accelerator=accelerator) | |
| loss = loss + non_weighted_loss * loss_config.weight | |
| loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| toc = time.time() | |
| forward_time = toc - tic | |
| tic = toc | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % args.validation_steps == 0: | |
| image_logs = log_validation(unwrap_model(unet), vae, | |
| text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| noise_scheduler, image_encoder, image_processor, deg_pipeline, | |
| args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False) | |
| logs = {} | |
| logs.update(loss_dict) | |
| logs.update({ | |
| "lr": lr_scheduler.get_last_lr()[0], | |
| "io_time": io_time, | |
| "prepare_time": prepare_time, | |
| "forward_time": forward_time | |
| }) | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| tic = time.time() | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| accelerator.save_state(os.path.join(args.output_dir, "last"), safe_serialization=False) | |
| # Run a final round of validation. | |
| # Setting `vae`, `unet`, and `controlnet` to None to load automatically from `args.output_dir`. | |
| image_logs = None | |
| if args.validation_image is not None: | |
| image_logs = log_validation( | |
| unwrap_model(unet), vae, | |
| text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| noise_scheduler, image_encoder, image_processor, deg_pipeline, | |
| args, accelerator, weight_dtype, global_step, | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) |