Spaces:
Running
on
Zero
Running
on
Zero
| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Tue Jul 11 06:54:28 2017 | |
| @author: zhaoyafei | |
| """ | |
| import numpy as np | |
| from numpy.linalg import inv, norm, lstsq | |
| from numpy.linalg import matrix_rank as rank | |
| class MatlabCp2tormException(Exception): | |
| def __str__(self): | |
| return 'In File {}:{}'.format( | |
| __file__, super.__str__(self)) | |
| def tformfwd(trans, uv): | |
| """ | |
| Function: | |
| ---------- | |
| apply affine transform 'trans' to uv | |
| Parameters: | |
| ---------- | |
| @trans: 3x3 np.array | |
| transform matrix | |
| @uv: Kx2 np.array | |
| each row is a pair of coordinates (x, y) | |
| Returns: | |
| ---------- | |
| @xy: Kx2 np.array | |
| each row is a pair of transformed coordinates (x, y) | |
| """ | |
| uv = np.hstack(( | |
| uv, np.ones((uv.shape[0], 1)) | |
| )) | |
| xy = np.dot(uv, trans) | |
| xy = xy[:, 0:-1] | |
| return xy | |
| def tforminv(trans, uv): | |
| """ | |
| Function: | |
| ---------- | |
| apply the inverse of affine transform 'trans' to uv | |
| Parameters: | |
| ---------- | |
| @trans: 3x3 np.array | |
| transform matrix | |
| @uv: Kx2 np.array | |
| each row is a pair of coordinates (x, y) | |
| Returns: | |
| ---------- | |
| @xy: Kx2 np.array | |
| each row is a pair of inverse-transformed coordinates (x, y) | |
| """ | |
| Tinv = inv(trans) | |
| xy = tformfwd(Tinv, uv) | |
| return xy | |
| def findNonreflectiveSimilarity(uv, xy, options=None): | |
| options = {'K': 2} | |
| K = options['K'] | |
| M = xy.shape[0] | |
| x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |
| y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |
| # print('--->x, y:\n', x, y | |
| tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) | |
| tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) | |
| X = np.vstack((tmp1, tmp2)) | |
| # print('--->X.shape: ', X.shape | |
| # print('X:\n', X | |
| u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |
| v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |
| U = np.vstack((u, v)) | |
| # print('--->U.shape: ', U.shape | |
| # print('U:\n', U | |
| # We know that X * r = U | |
| if rank(X) >= 2 * K: | |
| r, _, _, _ = lstsq(X, U) | |
| r = np.squeeze(r) | |
| else: | |
| raise Exception('cp2tform:twoUniquePointsReq') | |
| # print('--->r:\n', r | |
| sc = r[0] | |
| ss = r[1] | |
| tx = r[2] | |
| ty = r[3] | |
| Tinv = np.array([ | |
| [sc, -ss, 0], | |
| [ss, sc, 0], | |
| [tx, ty, 1] | |
| ]) | |
| # print('--->Tinv:\n', Tinv | |
| T = inv(Tinv) | |
| # print('--->T:\n', T | |
| T[:, 2] = np.array([0, 0, 1]) | |
| return T, Tinv | |
| def findSimilarity(uv, xy, options=None): | |
| options = {'K': 2} | |
| # uv = np.array(uv) | |
| # xy = np.array(xy) | |
| # Solve for trans1 | |
| trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) | |
| # Solve for trans2 | |
| # manually reflect the xy data across the Y-axis | |
| xyR = xy | |
| xyR[:, 0] = -1 * xyR[:, 0] | |
| trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) | |
| # manually reflect the tform to undo the reflection done on xyR | |
| TreflectY = np.array([ | |
| [-1, 0, 0], | |
| [0, 1, 0], | |
| [0, 0, 1] | |
| ]) | |
| trans2 = np.dot(trans2r, TreflectY) | |
| # Figure out if trans1 or trans2 is better | |
| xy1 = tformfwd(trans1, uv) | |
| norm1 = norm(xy1 - xy) | |
| xy2 = tformfwd(trans2, uv) | |
| norm2 = norm(xy2 - xy) | |
| if norm1 <= norm2: | |
| return trans1, trans1_inv | |
| else: | |
| trans2_inv = inv(trans2) | |
| return trans2, trans2_inv | |
| def get_similarity_transform(src_pts, dst_pts, reflective=True): | |
| """ | |
| Function: | |
| ---------- | |
| Find Similarity Transform Matrix 'trans': | |
| u = src_pts[:, 0] | |
| v = src_pts[:, 1] | |
| x = dst_pts[:, 0] | |
| y = dst_pts[:, 1] | |
| [x, y, 1] = [u, v, 1] * trans | |
| Parameters: | |
| ---------- | |
| @src_pts: Kx2 np.array | |
| source points, each row is a pair of coordinates (x, y) | |
| @dst_pts: Kx2 np.array | |
| destination points, each row is a pair of transformed | |
| coordinates (x, y) | |
| @reflective: True or False | |
| if True: | |
| use reflective similarity transform | |
| else: | |
| use non-reflective similarity transform | |
| Returns: | |
| ---------- | |
| @trans: 3x3 np.array | |
| transform matrix from uv to xy | |
| trans_inv: 3x3 np.array | |
| inverse of trans, transform matrix from xy to uv | |
| """ | |
| if reflective: | |
| trans, trans_inv = findSimilarity(src_pts, dst_pts) | |
| else: | |
| trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) | |
| return trans, trans_inv | |
| def cvt_tform_mat_for_cv2(trans): | |
| """ | |
| Function: | |
| ---------- | |
| Convert Transform Matrix 'trans' into 'cv2_trans' which could be | |
| directly used by cv2.warpAffine(): | |
| u = src_pts[:, 0] | |
| v = src_pts[:, 1] | |
| x = dst_pts[:, 0] | |
| y = dst_pts[:, 1] | |
| [x, y].T = cv_trans * [u, v, 1].T | |
| Parameters: | |
| ---------- | |
| @trans: 3x3 np.array | |
| transform matrix from uv to xy | |
| Returns: | |
| ---------- | |
| @cv2_trans: 2x3 np.array | |
| transform matrix from src_pts to dst_pts, could be directly used | |
| for cv2.warpAffine() | |
| """ | |
| cv2_trans = trans[:, 0:2].T | |
| return cv2_trans | |
| def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): | |
| """ | |
| Function: | |
| ---------- | |
| Find Similarity Transform Matrix 'cv2_trans' which could be | |
| directly used by cv2.warpAffine(): | |
| u = src_pts[:, 0] | |
| v = src_pts[:, 1] | |
| x = dst_pts[:, 0] | |
| y = dst_pts[:, 1] | |
| [x, y].T = cv_trans * [u, v, 1].T | |
| Parameters: | |
| ---------- | |
| @src_pts: Kx2 np.array | |
| source points, each row is a pair of coordinates (x, y) | |
| @dst_pts: Kx2 np.array | |
| destination points, each row is a pair of transformed | |
| coordinates (x, y) | |
| reflective: True or False | |
| if True: | |
| use reflective similarity transform | |
| else: | |
| use non-reflective similarity transform | |
| Returns: | |
| ---------- | |
| @cv2_trans: 2x3 np.array | |
| transform matrix from src_pts to dst_pts, could be directly used | |
| for cv2.warpAffine() | |
| """ | |
| trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) | |
| cv2_trans = cvt_tform_mat_for_cv2(trans) | |
| return cv2_trans | |
| if __name__ == '__main__': | |
| """ | |
| u = [0, 6, -2] | |
| v = [0, 3, 5] | |
| x = [-1, 0, 4] | |
| y = [-1, -10, 4] | |
| # In Matlab, run: | |
| # | |
| # uv = [u'; v']; | |
| # xy = [x'; y']; | |
| # tform_sim=cp2tform(uv,xy,'similarity'); | |
| # | |
| # trans = tform_sim.tdata.T | |
| # ans = | |
| # -0.0764 -1.6190 0 | |
| # 1.6190 -0.0764 0 | |
| # -3.2156 0.0290 1.0000 | |
| # trans_inv = tform_sim.tdata.Tinv | |
| # ans = | |
| # | |
| # -0.0291 0.6163 0 | |
| # -0.6163 -0.0291 0 | |
| # -0.0756 1.9826 1.0000 | |
| # xy_m=tformfwd(tform_sim, u,v) | |
| # | |
| # xy_m = | |
| # | |
| # -3.2156 0.0290 | |
| # 1.1833 -9.9143 | |
| # 5.0323 2.8853 | |
| # uv_m=tforminv(tform_sim, x,y) | |
| # | |
| # uv_m = | |
| # | |
| # 0.5698 1.3953 | |
| # 6.0872 2.2733 | |
| # -2.6570 4.3314 | |
| """ | |
| u = [0, 6, -2] | |
| v = [0, 3, 5] | |
| x = [-1, 0, 4] | |
| y = [-1, -10, 4] | |
| uv = np.array((u, v)).T | |
| xy = np.array((x, y)).T | |
| print('\n--->uv:') | |
| print(uv) | |
| print('\n--->xy:') | |
| print(xy) | |
| trans, trans_inv = get_similarity_transform(uv, xy) | |
| print('\n--->trans matrix:') | |
| print(trans) | |
| print('\n--->trans_inv matrix:') | |
| print(trans_inv) | |
| print('\n---> apply transform to uv') | |
| print('\nxy_m = uv_augmented * trans') | |
| uv_aug = np.hstack(( | |
| uv, np.ones((uv.shape[0], 1)) | |
| )) | |
| xy_m = np.dot(uv_aug, trans) | |
| print(xy_m) | |
| print('\nxy_m = tformfwd(trans, uv)') | |
| xy_m = tformfwd(trans, uv) | |
| print(xy_m) | |
| print('\n---> apply inverse transform to xy') | |
| print('\nuv_m = xy_augmented * trans_inv') | |
| xy_aug = np.hstack(( | |
| xy, np.ones((xy.shape[0], 1)) | |
| )) | |
| uv_m = np.dot(xy_aug, trans_inv) | |
| print(uv_m) | |
| print('\nuv_m = tformfwd(trans_inv, xy)') | |
| uv_m = tformfwd(trans_inv, xy) | |
| print(uv_m) | |
| uv_m = tforminv(trans, xy) | |
| print('\nuv_m = tforminv(trans, xy)') | |
| print(uv_m) | |