Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import os | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Train Consistency Encoder.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| # parser.add_argument( | |
| # "--instance_data_dir", | |
| # type=str, | |
| # required=True, | |
| # help=("A folder containing the training data. "), | |
| # ) | |
| parser.add_argument( | |
| "--data_config_path", | |
| type=str, | |
| required=True, | |
| help=("A folder containing the training data. "), | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument( | |
| "--image_column", | |
| type=str, | |
| default="image", | |
| help="The column of the dataset containing the target image. By " | |
| "default, the standard Image Dataset maps out 'file_name' " | |
| "to 'image'.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default=None, | |
| help="The column of the dataset containing the instance prompt for each image", | |
| ) | |
| parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
| parser.add_argument( | |
| "--instance_prompt", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| help="A prompt that is used during validation to verify that the model is learning.", | |
| ) | |
| parser.add_argument( | |
| "--num_train_vis_images", | |
| type=int, | |
| default=2, | |
| help="Number of images that should be generated during validation with `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=2, | |
| help="Number of images that should be generated during validation with `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_vis_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_vis_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--vis_lcm", | |
| type=bool, | |
| default=True, | |
| help=( | |
| "Also log results of LCM inference", | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="lora-dreambooth-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state") | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet") | |
| parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features") | |
| parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter") | |
| parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.") | |
| parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism") | |
| parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)") | |
| parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers") | |
| parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided") | |
| parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?") | |
| # related to CFG: | |
| parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training") | |
| parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training") | |
| parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=1024, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_h", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--crops_coords_top_left_w", | |
| type=int, | |
| default=0, | |
| help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=5, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--snr_gamma", | |
| type=float, | |
| default=None, | |
| help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
| "More details here: https://arxiv.org/abs/2303.09556.", | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
| parser.add_argument( | |
| "--adam_epsilon", | |
| type=float, | |
| default=1e-08, | |
| help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
| ) | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="wandb", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--rank", | |
| type=int, | |
| default=4, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument( | |
| "--pretrained_lcm_lora_path", | |
| type=str, | |
| default="latent-consistency/lcm-lora-sdxl", | |
| help=("Path for lcm lora pretrained"), | |
| ) | |
| parser.add_argument( | |
| "--losses_config_path", | |
| type=str, | |
| required=True, | |
| help=("A yaml file containing losses to use and their weights."), | |
| ) | |
| parser.add_argument( | |
| "--lcm_every_k_steps", | |
| type=int, | |
| default=-1, | |
| help="How often to run lcm. If -1, lcm is not run." | |
| ) | |
| parser.add_argument( | |
| "--lcm_batch_size", | |
| type=int, | |
| default=1, | |
| help="Batch size for lcm." | |
| ) | |
| parser.add_argument( | |
| "--lcm_max_timestep", | |
| type=int, | |
| default=1000, | |
| help="Max timestep to use with LCM." | |
| ) | |
| parser.add_argument( | |
| "--lcm_sample_scale_every_k_steps", | |
| type=int, | |
| default=-1, | |
| help="How often to change lcm scale. If -1, scale is fixed at 1." | |
| ) | |
| parser.add_argument( | |
| "--lcm_min_scale", | |
| type=float, | |
| default=0.1, | |
| help="When sampling lcm scale, the minimum scale to use." | |
| ) | |
| parser.add_argument( | |
| "--scale_lcm_by_max_step", | |
| action="store_true", | |
| help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration" | |
| ) | |
| parser.add_argument( | |
| "--lcm_sample_full_lcm_prob", | |
| type=float, | |
| default=0.2, | |
| help="When sampling lcm scale, the probability of using full lcm (scale of 1)." | |
| ) | |
| parser.add_argument( | |
| "--run_on_cpu", | |
| action="store_true", | |
| help="whether to run on cpu or not" | |
| ) | |
| parser.add_argument( | |
| "--experiment_name", | |
| type=str, | |
| help=("A short description of the experiment to add to the wand run log. "), | |
| ) | |
| parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora") | |
| parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora") | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| args.optimizer = "AdamW" | |
| return args |