Spaces:
Running
on
Zero
Running
on
Zero
Create app_with_diffusers.py
Browse files- app_with_diffusers.py +68 -0
app_with_diffusers.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
|
| 3 |
+
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
|
| 4 |
+
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".")
|
| 5 |
+
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".")
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
from diffusers import DDPMScheduler
|
| 11 |
+
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
|
| 12 |
+
|
| 13 |
+
from module.ip_adapter.utils import load_adapter_to_pipe
|
| 14 |
+
from pipelines.sdxl_instantir import InstantIRPipeline
|
| 15 |
+
|
| 16 |
+
# prepare models under ./models
|
| 17 |
+
instantir_path = f'./models'
|
| 18 |
+
|
| 19 |
+
# load pretrained models
|
| 20 |
+
pipe = InstantIRPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16)
|
| 21 |
+
|
| 22 |
+
# load adapter
|
| 23 |
+
load_adapter_to_pipe(
|
| 24 |
+
pipe,
|
| 25 |
+
f"{instantir_path}/adapter.pt",
|
| 26 |
+
image_encoder_or_path = 'facebook/dinov2-large',
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# load previewer lora
|
| 30 |
+
pipe.prepare_previewers(instantir_path)
|
| 31 |
+
pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
|
| 32 |
+
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
| 33 |
+
|
| 34 |
+
# load aggregator weights
|
| 35 |
+
pretrained_state_dict = torch.load(f"{instantir_path}/aggregator.pt")
|
| 36 |
+
pipe.aggregator.load_state_dict(pretrained_state_dict)
|
| 37 |
+
|
| 38 |
+
# send to GPU and fp16
|
| 39 |
+
pipe.to(device='cuda', dtype=torch.float16)
|
| 40 |
+
pipe.aggregator.to(device='cuda', dtype=torch.float16)
|
| 41 |
+
|
| 42 |
+
def infer(input_image):
|
| 43 |
+
# load a broken image
|
| 44 |
+
low_quality_image = Image.open(input_image).convert("RGB")
|
| 45 |
+
|
| 46 |
+
# InstantIR restoration
|
| 47 |
+
image = pipe(
|
| 48 |
+
image=low_quality_image,
|
| 49 |
+
previewer_scheduler=lcm_scheduler,
|
| 50 |
+
).images[0]
|
| 51 |
+
|
| 52 |
+
return image
|
| 53 |
+
|
| 54 |
+
import gradio as gr
|
| 55 |
+
|
| 56 |
+
with gr.Blocks() as demo:
|
| 57 |
+
with gr.Column():
|
| 58 |
+
with gr.Row():
|
| 59 |
+
with gr.Column():
|
| 60 |
+
lq_img = gr.Image(label="Low-quality image", type="filepath")
|
| 61 |
+
submit_btn = gr.Button("InstantIR magic!")
|
| 62 |
+
output_img = gr.Image(label="InstantIR restored")
|
| 63 |
+
submit_btn.click(
|
| 64 |
+
fn=infer,
|
| 65 |
+
inputs=[lq_img],
|
| 66 |
+
outputs=[output_img]
|
| 67 |
+
)
|
| 68 |
+
demo.launch(show_error=True)
|