Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import sys
|
| 2 |
import os
|
| 3 |
from pathlib import Path
|
|
|
|
| 4 |
|
| 5 |
# Add the StableCascade and CSD directories to the Python path
|
| 6 |
app_dir = Path(__file__).parent
|
|
@@ -27,12 +28,29 @@ from gdf.schedulers import CosineSchedule
|
|
| 27 |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
| 28 |
from gdf.targets import EpsilonTarget
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# Device configuration
|
| 31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
print(device)
|
| 33 |
|
| 34 |
# Flag for low VRAM usage
|
| 35 |
-
low_vram =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Function definition for low VRAM usage
|
| 38 |
if low_vram:
|
|
@@ -53,84 +71,12 @@ if low_vram:
|
|
| 53 |
print(f"Change device of '{attr_name}' to {device}")
|
| 54 |
attr_value.to(device)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Stage C model configuration
|
| 59 |
-
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
|
| 60 |
-
with open(config_file, "r", encoding="utf-8") as file:
|
| 61 |
-
loaded_config = yaml.safe_load(file)
|
| 62 |
-
|
| 63 |
-
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
|
| 67 |
-
with open(config_file_b, "r", encoding="utf-8") as file:
|
| 68 |
-
config_file_b = yaml.safe_load(file)
|
| 69 |
-
|
| 70 |
-
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
| 71 |
-
|
| 72 |
-
# Setup extras and models for Stage C
|
| 73 |
-
extras = core.setup_extras_pre()
|
| 74 |
-
|
| 75 |
-
gdf_rbm = RBM(
|
| 76 |
-
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
| 77 |
-
input_scaler=VPScaler(), target=EpsilonTarget(),
|
| 78 |
-
noise_cond=CosineTNoiseCond(),
|
| 79 |
-
loss_weight=AdaptiveLossWeight(),
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
sampling_configs = {
|
| 83 |
-
"cfg": 5,
|
| 84 |
-
"sampler": DDPMSampler(gdf_rbm),
|
| 85 |
-
"shift": 1,
|
| 86 |
-
"timesteps": 20
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
extras = core.Extras(
|
| 90 |
-
gdf=gdf_rbm,
|
| 91 |
-
sampling_configs=sampling_configs,
|
| 92 |
-
transforms=extras.transforms,
|
| 93 |
-
effnet_preprocess=extras.effnet_preprocess,
|
| 94 |
-
clip_preprocess=extras.clip_preprocess
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
models = core.setup_models(extras)
|
| 98 |
-
models.generator.eval().requires_grad_(False)
|
| 99 |
-
|
| 100 |
-
# Setup extras and models for Stage B
|
| 101 |
-
extras_b = core_b.setup_extras_pre()
|
| 102 |
-
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
| 103 |
-
models_b = WurstCoreB.Models(
|
| 104 |
-
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
| 105 |
-
)
|
| 106 |
-
models_b.generator.bfloat16().eval().requires_grad_(False)
|
| 107 |
-
|
| 108 |
-
# Off-load old generator (low VRAM mode)
|
| 109 |
-
if low_vram:
|
| 110 |
-
models.generator.to("cpu")
|
| 111 |
-
torch.cuda.empty_cache()
|
| 112 |
-
|
| 113 |
-
# Load and configure new generator
|
| 114 |
-
generator_rbm = StageCRBM()
|
| 115 |
-
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
|
| 116 |
-
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
|
| 117 |
-
|
| 118 |
-
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
|
| 119 |
-
generator_rbm = core.load_model(generator_rbm, 'generator')
|
| 120 |
-
|
| 121 |
-
# Create models_rbm instance
|
| 122 |
-
models_rbm = core.Models(
|
| 123 |
-
effnet=models.effnet,
|
| 124 |
-
previewer=models.previewer,
|
| 125 |
-
generator=generator_rbm,
|
| 126 |
-
generator_ema=models.generator_ema,
|
| 127 |
-
tokenizer=models.tokenizer,
|
| 128 |
-
text_model=models.text_model,
|
| 129 |
-
image_model=models.image_model
|
| 130 |
-
)
|
| 131 |
-
models_rbm.generator.eval().requires_grad_(False)
|
| 132 |
|
| 133 |
def infer(style_description, ref_style_file, caption):
|
|
|
|
| 134 |
|
| 135 |
height=1024
|
| 136 |
width=1024
|
|
@@ -166,19 +112,22 @@ def infer(style_description, ref_style_file, caption):
|
|
| 166 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 167 |
|
| 168 |
# Stage C reverse process.
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
sampled_c =
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Stage B reverse process.
|
| 184 |
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
|
@@ -203,6 +152,8 @@ def infer(style_description, ref_style_file, caption):
|
|
| 203 |
sampled_image = T.ToPILImage()(sampled.squeeze(0)) # Convert tensor to PIL image
|
| 204 |
sampled_image.save(output_file) # Save the image
|
| 205 |
|
|
|
|
|
|
|
| 206 |
return output_file # Return the path to the saved image
|
| 207 |
|
| 208 |
import gradio as gr
|
|
|
|
| 1 |
import sys
|
| 2 |
import os
|
| 3 |
from pathlib import Path
|
| 4 |
+
import gc
|
| 5 |
|
| 6 |
# Add the StableCascade and CSD directories to the Python path
|
| 7 |
app_dir = Path(__file__).parent
|
|
|
|
| 28 |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
| 29 |
from gdf.targets import EpsilonTarget
|
| 30 |
|
| 31 |
+
# Enable mixed precision
|
| 32 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 33 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 34 |
+
|
| 35 |
# Device configuration
|
| 36 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 37 |
print(device)
|
| 38 |
|
| 39 |
# Flag for low VRAM usage
|
| 40 |
+
low_vram = True # Set to True to enable low VRAM optimizations
|
| 41 |
+
|
| 42 |
+
# Function to clear GPU cache
|
| 43 |
+
def clear_gpu_cache():
|
| 44 |
+
torch.cuda.empty_cache()
|
| 45 |
+
gc.collect()
|
| 46 |
+
|
| 47 |
+
# Function to move model to CPU
|
| 48 |
+
def to_cpu(model):
|
| 49 |
+
return model.cpu()
|
| 50 |
+
|
| 51 |
+
# Function to move model to GPU
|
| 52 |
+
def to_gpu(model):
|
| 53 |
+
return model.cuda()
|
| 54 |
|
| 55 |
# Function definition for low VRAM usage
|
| 56 |
if low_vram:
|
|
|
|
| 71 |
print(f"Change device of '{attr_name}' to {device}")
|
| 72 |
attr_value.to(device)
|
| 73 |
|
| 74 |
+
clear_gpu_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# ... (rest of your setup code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def infer(style_description, ref_style_file, caption):
|
| 79 |
+
clear_gpu_cache() # Clear cache before inference
|
| 80 |
|
| 81 |
height=1024
|
| 82 |
width=1024
|
|
|
|
| 112 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 113 |
|
| 114 |
# Stage C reverse process.
|
| 115 |
+
with torch.cuda.amp.autocast(): # Use mixed precision
|
| 116 |
+
sampling_c = extras.gdf.sample(
|
| 117 |
+
models_rbm.generator, conditions, stage_c_latent_shape,
|
| 118 |
+
unconditions, device=device,
|
| 119 |
+
**extras.sampling_configs,
|
| 120 |
+
x0_style_forward=x0_style_forward,
|
| 121 |
+
apply_pushforward=False, tau_pushforward=8,
|
| 122 |
+
num_iter=3, eta=0.1, tau=20, eval_csd=True,
|
| 123 |
+
extras=extras, models=models_rbm,
|
| 124 |
+
lam_style=1, lam_txt_alignment=1.0,
|
| 125 |
+
use_ddim_sampler=True,
|
| 126 |
+
)
|
| 127 |
+
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
| 128 |
+
sampled_c = sampled_c
|
| 129 |
+
|
| 130 |
+
clear_gpu_cache() # Clear cache between stages
|
| 131 |
|
| 132 |
# Stage B reverse process.
|
| 133 |
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
|
|
|
| 152 |
sampled_image = T.ToPILImage()(sampled.squeeze(0)) # Convert tensor to PIL image
|
| 153 |
sampled_image.save(output_file) # Save the image
|
| 154 |
|
| 155 |
+
clear_gpu_cache() # Clear cache after inference
|
| 156 |
+
|
| 157 |
return output_file # Return the path to the saved image
|
| 158 |
|
| 159 |
import gradio as gr
|