Spaces:
Build error
Build error
add infer_compo
Browse files
app.py
CHANGED
|
@@ -272,6 +272,113 @@ def infer(ref_style_file, style_description, caption):
|
|
| 272 |
# Reset the state after inference, regardless of success or failure
|
| 273 |
reset_inference_state()
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
import gradio as gr
|
| 276 |
|
| 277 |
with gr.Blocks() as demo:
|
|
@@ -289,27 +396,34 @@ with gr.Blocks() as demo:
|
|
| 289 |
</div>
|
| 290 |
""")
|
| 291 |
with gr.Row():
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
| 309 |
submit_btn.click(
|
| 310 |
fn = infer,
|
| 311 |
inputs = [style_reference_image, style_description, subject_prompt],
|
| 312 |
outputs = [output_image]
|
| 313 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
demo.launch()
|
|
|
|
| 272 |
# Reset the state after inference, regardless of success or failure
|
| 273 |
reset_inference_state()
|
| 274 |
|
| 275 |
+
def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
| 276 |
+
global models_rbm, models_b
|
| 277 |
+
try:
|
| 278 |
+
caption = f"{caption} in {style_description}"
|
| 279 |
+
sam_prompt = f"{caption}"
|
| 280 |
+
use_sam_mask = False
|
| 281 |
+
|
| 282 |
+
if low_vram:
|
| 283 |
+
# Revert the devices of the modules back to their original state
|
| 284 |
+
models_to(models_rbm, device)
|
| 285 |
+
|
| 286 |
+
batch_size = 1
|
| 287 |
+
height, width = 1024, 1024
|
| 288 |
+
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 289 |
+
|
| 290 |
+
extras.sampling_configs['cfg'] = 4
|
| 291 |
+
extras.sampling_configs['shift'] = 2
|
| 292 |
+
extras.sampling_configs['timesteps'] = 20
|
| 293 |
+
extras.sampling_configs['t_start'] = 1.0
|
| 294 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
| 295 |
+
extras_b.sampling_configs['shift'] = 1
|
| 296 |
+
extras_b.sampling_configs['timesteps'] = 10
|
| 297 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
| 298 |
+
|
| 299 |
+
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 300 |
+
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 301 |
+
|
| 302 |
+
batch = {'captions': [caption] * batch_size}
|
| 303 |
+
batch['style'] = ref_style
|
| 304 |
+
batch['images'] = ref_images
|
| 305 |
+
|
| 306 |
+
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images.to(device)))
|
| 307 |
+
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
|
| 308 |
+
|
| 309 |
+
## SAM Mask for sub
|
| 310 |
+
use_sam_mask = False
|
| 311 |
+
x0_preview = models_rbm.previewer(x0_forward)
|
| 312 |
+
sam_model = LangSAM()
|
| 313 |
+
sam_mask, boxes, phrases, logits = sam_model.predict(transform(x0_preview[0]), sam_prompt)
|
| 314 |
+
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
|
| 315 |
+
|
| 316 |
+
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_subject_style=True, eval_csd=False)
|
| 317 |
+
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False, eval_subject_style=True)
|
| 318 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
| 319 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 320 |
+
|
| 321 |
+
if low_vram:
|
| 322 |
+
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
| 323 |
+
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 324 |
+
models_to(sam_model, device="cpu")
|
| 325 |
+
models_to(sam_model.sam, device="cpu")
|
| 326 |
+
|
| 327 |
+
# Stage C reverse process.
|
| 328 |
+
sampling_c = extras.gdf.sample(
|
| 329 |
+
models_rbm.generator, conditions, stage_c_latent_shape,
|
| 330 |
+
unconditions, device=device,
|
| 331 |
+
**extras.sampling_configs,
|
| 332 |
+
x0_style_forward=x0_style_forward, x0_forward=x0_forward,
|
| 333 |
+
apply_pushforward=False, tau_pushforward=5, tau_pushforward_csd=10,
|
| 334 |
+
num_iter=3, eta=1e-1, tau=20, eval_sub_csd=True,
|
| 335 |
+
extras=extras, models=models_rbm,
|
| 336 |
+
use_attn_mask=use_sam_mask,
|
| 337 |
+
save_attn_mask=False,
|
| 338 |
+
lam_content=1, lam_style=1,
|
| 339 |
+
sam_mask=sam_mask, use_sam_mask=use_sam_mask,
|
| 340 |
+
sam_prompt=sam_prompt
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
| 344 |
+
sampled_c = sampled_c
|
| 345 |
+
|
| 346 |
+
# Stage B reverse process.
|
| 347 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 348 |
+
conditions_b['effnet'] = sampled_c
|
| 349 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
| 350 |
+
|
| 351 |
+
sampling_b = extras_b.gdf.sample(
|
| 352 |
+
models_b.generator, conditions_b, stage_b_latent_shape,
|
| 353 |
+
unconditions_b, device=device, **extras_b.sampling_configs,
|
| 354 |
+
)
|
| 355 |
+
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
|
| 356 |
+
sampled_b = sampled_b
|
| 357 |
+
sampled = models_b.stage_a.decode(sampled_b).float()
|
| 358 |
+
|
| 359 |
+
sampled = torch.cat([
|
| 360 |
+
torch.nn.functional.interpolate(ref_images.cpu(), size=(height, width)),
|
| 361 |
+
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
|
| 362 |
+
sampled.cpu(),
|
| 363 |
+
], dim=0)
|
| 364 |
+
|
| 365 |
+
# Remove the batch dimension and keep only the generated image
|
| 366 |
+
sampled = sampled[2] # This selects the generated image, discarding the reference images
|
| 367 |
+
|
| 368 |
+
# Ensure the tensor is in [C, H, W] format
|
| 369 |
+
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
| 370 |
+
output_file = 'output_compo.png'
|
| 371 |
+
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
| 372 |
+
sampled_image.save(output_file) # Save the image as a PNG
|
| 373 |
+
else:
|
| 374 |
+
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
| 375 |
+
|
| 376 |
+
return output_file # Return the path to the saved image
|
| 377 |
+
|
| 378 |
+
finally:
|
| 379 |
+
# Reset the state after inference, regardless of success or failure
|
| 380 |
+
reset_inference_state()
|
| 381 |
+
|
| 382 |
import gradio as gr
|
| 383 |
|
| 384 |
with gr.Blocks() as demo:
|
|
|
|
| 396 |
</div>
|
| 397 |
""")
|
| 398 |
with gr.Row():
|
| 399 |
+
with gr.Column():
|
| 400 |
+
style_reference_image = gr.Image(
|
| 401 |
+
label = "Style Reference Image",
|
| 402 |
+
type = "filepath"
|
| 403 |
+
)
|
| 404 |
+
style_description = gr.Textbox(
|
| 405 |
+
label ="Style Description"
|
| 406 |
+
)
|
| 407 |
+
subject_prompt = gr.Textbox(
|
| 408 |
+
label = "Subject Prompt"
|
| 409 |
+
)
|
| 410 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 411 |
+
subject_reference = gr.Image(type="filepath")
|
| 412 |
+
use_subject_ref = gr.Checkbox(label="Use Subject Image as Reference", value=False)
|
| 413 |
+
submit_btn = gr.Button("Submit")
|
| 414 |
+
with gr.Column():
|
| 415 |
+
output_image = gr.Image(label="Output Image")
|
| 416 |
+
'''
|
| 417 |
submit_btn.click(
|
| 418 |
fn = infer,
|
| 419 |
inputs = [style_reference_image, style_description, subject_prompt],
|
| 420 |
outputs = [output_image]
|
| 421 |
)
|
| 422 |
+
'''
|
| 423 |
+
submit_btn.click(
|
| 424 |
+
fn = infer_compo,
|
| 425 |
+
inputs = [style_description, style_reference_image, subject_prompt, subject_reference],
|
| 426 |
+
outputs = [output_image]
|
| 427 |
+
)
|
| 428 |
|
| 429 |
demo.launch()
|