Spaces:
Build error
Build error
return PIL images everywhere, do not convert to PNG to avoid artifacts
Browse files
app.py
CHANGED
|
@@ -137,7 +137,6 @@ def infer(ref_style_file, style_description, caption, progress):
|
|
| 137 |
height=1024
|
| 138 |
width=1024
|
| 139 |
batch_size=1
|
| 140 |
-
output_file='output.png'
|
| 141 |
|
| 142 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 143 |
|
|
@@ -221,13 +220,11 @@ def infer(ref_style_file, style_description, caption, progress):
|
|
| 221 |
# Ensure the tensor is in [C, H, W] format
|
| 222 |
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
| 223 |
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
| 224 |
-
# sampled_image.save(output_file) # Save the image as a PNG
|
| 225 |
else:
|
| 226 |
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
| 227 |
|
| 228 |
progress(1.0, "Inference complete")
|
| 229 |
-
|
| 230 |
-
return sampled_image
|
| 231 |
|
| 232 |
finally:
|
| 233 |
# Clear CUDA cache
|
|
@@ -342,14 +339,12 @@ def infer_compo(style_description, ref_style_file, caption, ref_sub_file, progre
|
|
| 342 |
|
| 343 |
# Ensure the tensor is in [C, H, W] format
|
| 344 |
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
| 345 |
-
output_file = 'output_compo.png'
|
| 346 |
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
| 347 |
-
sampled_image.save(output_file) # Save the image as a PNG
|
| 348 |
else:
|
| 349 |
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
| 350 |
|
| 351 |
progress(1.0, "Inference complete")
|
| 352 |
-
return
|
| 353 |
|
| 354 |
finally:
|
| 355 |
# Clear CUDA cache
|
|
|
|
| 137 |
height=1024
|
| 138 |
width=1024
|
| 139 |
batch_size=1
|
|
|
|
| 140 |
|
| 141 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 142 |
|
|
|
|
| 220 |
# Ensure the tensor is in [C, H, W] format
|
| 221 |
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
| 222 |
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
|
|
|
| 223 |
else:
|
| 224 |
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
| 225 |
|
| 226 |
progress(1.0, "Inference complete")
|
| 227 |
+
return sampled_image # Return the sampled_image PIL image
|
|
|
|
| 228 |
|
| 229 |
finally:
|
| 230 |
# Clear CUDA cache
|
|
|
|
| 339 |
|
| 340 |
# Ensure the tensor is in [C, H, W] format
|
| 341 |
if sampled.dim() == 3 and sampled.shape[0] == 3:
|
|
|
|
| 342 |
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
|
|
|
|
| 343 |
else:
|
| 344 |
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
|
| 345 |
|
| 346 |
progress(1.0, "Inference complete")
|
| 347 |
+
return sampled_image # Return the sampled_image PIL image
|
| 348 |
|
| 349 |
finally:
|
| 350 |
# Clear CUDA cache
|