Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -182,7 +182,7 @@ def infer(ref_style_file, style_description, caption, progress):
|
|
| 182 |
lam_style=1, lam_txt_alignment=1.0,
|
| 183 |
use_ddim_sampler=True,
|
| 184 |
)
|
| 185 |
-
for (sampled_c, _, _) in progress.tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
|
| 186 |
#for i, (sampled_c, _, _) in enumerate(sampling_c, 1):
|
| 187 |
# if i % 5 == 0: # Update progress every 5 steps
|
| 188 |
# progress(0.4 + 0.3 * (i / extras.sampling_configs['timesteps']), f"Stage C reverse process: step {i}/{extras.sampling_configs['timesteps']}")
|
|
@@ -199,7 +199,7 @@ def infer(ref_style_file, style_description, caption, progress):
|
|
| 199 |
unconditions_b, device=device, **extras_b.sampling_configs,
|
| 200 |
)
|
| 201 |
for i, (sampled_b, _, _) in enumerate(sampling_b, 1):
|
| 202 |
-
if i %
|
| 203 |
progress(0.7 + 0.2 * (i / extras_b.sampling_configs['timesteps']), f"Stage B reverse process: step {i}/{extras_b.sampling_configs['timesteps']}")
|
| 204 |
sampled_b = sampled_b
|
| 205 |
sampled = models_b.stage_a.decode(sampled_b).float()
|
|
|
|
| 182 |
lam_style=1, lam_txt_alignment=1.0,
|
| 183 |
use_ddim_sampler=True,
|
| 184 |
)
|
| 185 |
+
for (sampled_c, _, _) in progress.tqdm(tqdm(sampling_c, total=extras.sampling_configs['timesteps'])):
|
| 186 |
#for i, (sampled_c, _, _) in enumerate(sampling_c, 1):
|
| 187 |
# if i % 5 == 0: # Update progress every 5 steps
|
| 188 |
# progress(0.4 + 0.3 * (i / extras.sampling_configs['timesteps']), f"Stage C reverse process: step {i}/{extras.sampling_configs['timesteps']}")
|
|
|
|
| 199 |
unconditions_b, device=device, **extras_b.sampling_configs,
|
| 200 |
)
|
| 201 |
for i, (sampled_b, _, _) in enumerate(sampling_b, 1):
|
| 202 |
+
if i % 1 == 0: # Update progress every 1 step
|
| 203 |
progress(0.7 + 0.2 * (i / extras_b.sampling_configs['timesteps']), f"Stage B reverse process: step {i}/{extras_b.sampling_configs['timesteps']}")
|
| 204 |
sampled_b = sampled_b
|
| 205 |
sampled = models_b.stage_a.decode(sampled_b).float()
|