Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -272,48 +272,68 @@ def infer(ref_style_file, style_description, caption):
|
|
| 272 |
# Reset the state after inference, regardless of success or failure
|
| 273 |
reset_inference_state()
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
| 276 |
-
global models_rbm, models_b
|
| 277 |
try:
|
| 278 |
caption = f"{caption} in {style_description}"
|
| 279 |
sam_prompt = f"{caption}"
|
| 280 |
use_sam_mask = False
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
|
| 286 |
batch_size = 1
|
| 287 |
height, width = 1024, 1024
|
| 288 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 289 |
|
| 290 |
-
extras.sampling_configs['cfg'] = 4
|
| 291 |
-
extras.sampling_configs['shift'] = 2
|
| 292 |
-
extras.sampling_configs['timesteps'] = 20
|
| 293 |
-
extras.sampling_configs['t_start'] = 1.0
|
| 294 |
-
extras_b.sampling_configs['cfg'] = 1.1
|
| 295 |
-
extras_b.sampling_configs['shift'] = 1
|
| 296 |
-
extras_b.sampling_configs['timesteps'] = 10
|
| 297 |
-
extras_b.sampling_configs['t_start'] = 1.0
|
| 298 |
-
|
| 299 |
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 300 |
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 301 |
|
| 302 |
-
batch = {'captions': [caption] * batch_size}
|
| 303 |
-
batch['style'] = ref_style
|
| 304 |
-
batch['images'] = ref_images
|
| 305 |
|
| 306 |
-
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images
|
| 307 |
-
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style
|
| 308 |
|
| 309 |
## SAM Mask for sub
|
| 310 |
use_sam_mask = False
|
| 311 |
x0_preview = models_rbm.previewer(x0_forward)
|
| 312 |
sam_model = LangSAM()
|
|
|
|
| 313 |
|
| 314 |
-
|
| 315 |
-
x0_preview_pil = T.ToPILImage()(x0_preview[0])
|
| 316 |
-
x0_preview_tensor = T.ToTensor()(x0_preview_pil) # Convert PIL Image back to tensor
|
| 317 |
sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
|
| 318 |
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
|
| 319 |
|
|
@@ -323,7 +343,6 @@ def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
|
| 323 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 324 |
|
| 325 |
if low_vram:
|
| 326 |
-
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
| 327 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 328 |
models_to(sam_model, device="cpu")
|
| 329 |
models_to(sam_model.sam, device="cpu")
|
|
@@ -381,7 +400,7 @@ def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
|
| 381 |
|
| 382 |
finally:
|
| 383 |
# Reset the state after inference, regardless of success or failure
|
| 384 |
-
|
| 385 |
|
| 386 |
import gradio as gr
|
| 387 |
|
|
|
|
| 272 |
# Reset the state after inference, regardless of success or failure
|
| 273 |
reset_inference_state()
|
| 274 |
|
| 275 |
+
def reset_compo_inference_state():
|
| 276 |
+
global models_rbm, models_b, extras, extras_b, device, core, core_b
|
| 277 |
+
|
| 278 |
+
# Reset sampling configurations
|
| 279 |
+
extras.sampling_configs['cfg'] = 4
|
| 280 |
+
extras.sampling_configs['shift'] = 2
|
| 281 |
+
extras.sampling_configs['timesteps'] = 20
|
| 282 |
+
extras.sampling_configs['t_start'] = 1.0
|
| 283 |
+
|
| 284 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
| 285 |
+
extras_b.sampling_configs['shift'] = 1
|
| 286 |
+
extras_b.sampling_configs['timesteps'] = 10
|
| 287 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
| 288 |
+
|
| 289 |
+
# Move models to CPU to free up GPU memory
|
| 290 |
+
models_to(models_rbm, device="cpu")
|
| 291 |
+
models_b.generator.to("cpu")
|
| 292 |
+
|
| 293 |
+
# Clear CUDA cache
|
| 294 |
+
torch.cuda.empty_cache()
|
| 295 |
+
gc.collect()
|
| 296 |
+
|
| 297 |
+
# Ensure all models are in eval mode and don't require gradients
|
| 298 |
+
for model in [models_rbm.generator, models_b.generator]:
|
| 299 |
+
model.eval()
|
| 300 |
+
for param in model.parameters():
|
| 301 |
+
param.requires_grad = False
|
| 302 |
+
|
| 303 |
+
# Clear CUDA cache again
|
| 304 |
+
torch.cuda.empty_cache()
|
| 305 |
+
gc.collect()
|
| 306 |
+
|
| 307 |
def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
| 308 |
+
global models_rbm, models_b, device
|
| 309 |
try:
|
| 310 |
caption = f"{caption} in {style_description}"
|
| 311 |
sam_prompt = f"{caption}"
|
| 312 |
use_sam_mask = False
|
| 313 |
|
| 314 |
+
# Ensure all models are on the correct device
|
| 315 |
+
models_to(models_rbm, device)
|
| 316 |
+
models_b.generator.to(device)
|
| 317 |
|
| 318 |
batch_size = 1
|
| 319 |
height, width = 1024, 1024
|
| 320 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 323 |
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
| 324 |
|
| 325 |
+
batch = {'captions': [caption] * batch_size, 'style': ref_style, 'images': ref_images}
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images))
|
| 328 |
+
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style))
|
| 329 |
|
| 330 |
## SAM Mask for sub
|
| 331 |
use_sam_mask = False
|
| 332 |
x0_preview = models_rbm.previewer(x0_forward)
|
| 333 |
sam_model = LangSAM()
|
| 334 |
+
sam_model.to(device)
|
| 335 |
|
| 336 |
+
x0_preview_pil = T.ToPILImage()(x0_preview[0].cpu())
|
|
|
|
|
|
|
| 337 |
sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
|
| 338 |
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
|
| 339 |
|
|
|
|
| 343 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 344 |
|
| 345 |
if low_vram:
|
|
|
|
| 346 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
| 347 |
models_to(sam_model, device="cpu")
|
| 348 |
models_to(sam_model.sam, device="cpu")
|
|
|
|
| 400 |
|
| 401 |
finally:
|
| 402 |
# Reset the state after inference, regardless of success or failure
|
| 403 |
+
reset_compo_inference_state()
|
| 404 |
|
| 405 |
import gradio as gr
|
| 406 |
|