Spaces:
Sleeping
Sleeping
| from typing import List, Optional, Union | |
| import torch | |
| from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( | |
| retrieve_timesteps, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| def freeze_params(params): | |
| for param in params: | |
| param.requires_grad = False | |
| class RewardStableDiffusionXL(StableDiffusionXLPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: bool = False, | |
| is_hyper: bool = False, | |
| memsave: bool = False, | |
| ): | |
| super().__init__( | |
| vae, | |
| text_encoder, | |
| text_encoder_2, | |
| tokenizer, | |
| tokenizer_2, | |
| unet, | |
| scheduler, | |
| image_encoder, | |
| feature_extractor, | |
| force_zeros_for_empty_prompt, | |
| add_watermarker, | |
| ) | |
| # optionally enable memsave_torch | |
| if memsave: | |
| import memsave_torch.nn | |
| self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae) | |
| self.unet = memsave_torch.nn.convert_to_memory_saving(self.unet) | |
| self.text_encoder = memsave_torch.nn.convert_to_memory_saving( | |
| self.text_encoder | |
| ) | |
| self.text_encoder_2 = memsave_torch.nn.convert_to_memory_saving( | |
| self.text_encoder_2 | |
| ) | |
| # enable checkpointing | |
| self.unet.enable_gradient_checkpointing() | |
| self.vae.enable_gradient_checkpointing() | |
| self.text_encoder.eval() | |
| self.text_encoder_2.eval() | |
| self.unet.eval() | |
| self.vae.eval() | |
| self.is_hyper = is_hyper | |
| # freeze diffusion parameters | |
| freeze_params(self.vae.parameters()) | |
| freeze_params(self.unet.parameters()) | |
| freeze_params(self.text_encoder.parameters()) | |
| freeze_params(self.text_encoder_2.parameters()) | |
| def decode_latents_tensors(self, latents): | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| return image | |
| def apply( | |
| self, | |
| latents: torch.Tensor, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 1, | |
| guidance_scale: float = 0.0, | |
| timesteps: List[int] = None, | |
| denoising_end: Optional[float] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| ) -> torch.Tensor: | |
| if self.is_hyper: | |
| timesteps = [800] | |
| # 0. Default height and width to unet | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_size = (height, width) | |
| target_size = (height, width) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| callback_steps=1, | |
| ) | |
| # 2. Define call parameters | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = 0 | |
| self._cross_attention_kwargs = None | |
| self._denoising_end = denoising_end | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| batch_size = 1 | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) | |
| if self.cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds = None | |
| negative_prompt_embeds = None | |
| pooled_prompt_embeds = None | |
| negative_pooled_prompt_embeds = None | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps | |
| ) | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, | |
| (0, 0), | |
| target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| negative_add_time_ids = add_time_ids | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat( | |
| [negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
| ) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat( | |
| batch_size * num_images_per_prompt, 1 | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
| ) | |
| # 8.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and isinstance(self.denoising_end, float) | |
| and self.denoising_end > 0 | |
| and self.denoising_end < 1 | |
| ): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len( | |
| list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
| ) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 9. Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
| batch_size * num_images_per_prompt | |
| ) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self._num_timesteps = len(timesteps) | |
| # 8. Denoising loop | |
| # 8.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and isinstance(self.denoising_end, float) | |
| and self.denoising_end > 0 | |
| and self.denoising_end < 1 | |
| ): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len( | |
| list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
| ) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 9. Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| self._num_timesteps = len(timesteps) | |
| for i, t in enumerate(timesteps): | |
| if self._interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids, | |
| } | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| if self.is_hyper: | |
| latents = latents.to(torch.float32) | |
| image = self.decode_latents_tensors(latents) | |
| image = image.to(torch.float16) | |
| else: | |
| image = self.decode_latents_tensors(latents) | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return image |