Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import argparse | |
| import copy | |
| from diffusers.utils import load_image, export_to_video | |
| from diffusers import UNetSpatioTemporalConditionModel | |
| from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline | |
| from custom_diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler | |
| from attn_ctrl.attention_control import (AttentionStore, | |
| register_temporal_self_attention_control, | |
| register_temporal_self_attention_flip_control, | |
| ) | |
| def main(args): | |
| noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| scheduler=noise_scheduler, | |
| variant="fp16", | |
| torch_dtype=torch.float16, | |
| ) | |
| ref_unet = pipe.ori_unet | |
| state_dict = pipe.unet.state_dict() | |
| # computing delta w | |
| finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
| args.checkpoint_dir, | |
| subfolder="unet", | |
| torch_dtype=torch.float16, | |
| ) | |
| assert finetuned_unet.config.num_frames==14 | |
| ori_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
| "stabilityai/stable-video-diffusion-img2vid", | |
| subfolder="unet", | |
| variant='fp16', | |
| torch_dtype=torch.float16, | |
| ) | |
| finetuned_state_dict = finetuned_unet.state_dict() | |
| ori_state_dict = ori_unet.state_dict() | |
| for name, param in finetuned_state_dict.items(): | |
| if 'temporal_transformer_blocks.0.attn1.to_v' in name or "temporal_transformer_blocks.0.attn1.to_out.0" in name: | |
| delta_w = param - ori_state_dict[name] | |
| state_dict[name] = state_dict[name] + delta_w | |
| pipe.unet.load_state_dict(state_dict) | |
| controller_ref= AttentionStore() | |
| register_temporal_self_attention_control(ref_unet, controller_ref) | |
| controller = AttentionStore() | |
| register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref) | |
| pipe = pipe.to(args.device) | |
| # run inference | |
| generator = torch.Generator(device=args.device) | |
| if args.seed is not None: | |
| generator = generator.manual_seed(args.seed) | |
| frame1 = load_image(args.frame1_path) | |
| frame1 = frame1.resize((1024, 576)) | |
| frame2 = load_image(args.frame2_path) | |
| frame2 = frame2.resize((1024, 576)) | |
| frames = pipe(image1=frame1, image2=frame2, | |
| num_inference_steps=args.num_inference_steps, | |
| generator=generator, | |
| weighted_average=args.weighted_average, | |
| noise_injection_steps=args.noise_injection_steps, | |
| noise_injection_ratio= args.noise_injection_ratio, | |
| ).frames[0] | |
| if args.out_path.endswith('.gif'): | |
| frames[0].save(args.out_path, save_all=True, append_images=frames[1:], duration=142, loop=0) | |
| else: | |
| export_to_video(frames, args.out_path, fps=7) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--pretrained_model_name_or_path", type=str, default="stabilityai/stable-video-diffusion-img2vid-xt") | |
| parser.add_argument("--checkpoint_dir", type=str, required=True) | |
| parser.add_argument('--frame1_path', type=str, required=True) | |
| parser.add_argument('--frame2_path', type=str, required=True) | |
| parser.add_argument('--out_path', type=str, required=True) | |
| parser.add_argument('--seed', type=int, default=42) | |
| parser.add_argument('--num_inference_steps', type=int, default=50) | |
| parser.add_argument('--weighted_average', action='store_true') | |
| parser.add_argument('--noise_injection_steps', type=int, default=0) | |
| parser.add_argument('--noise_injection_ratio', type=float, default=0.5) | |
| parser.add_argument('--device', type=str, default='cuda:0') | |
| args = parser.parse_args() | |
| out_dir = os.path.dirname(args.out_path) | |
| os.makedirs(out_dir, exist_ok=True) | |
| main(args) | |