| from functools import lru_cache | |
| import torch | |
| from sentence_transformers import SentenceTransformer | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| list_models = [ | |
| 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2', | |
| 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', | |
| 'sentence-transformers/all-mpnet-base-v2', | |
| 'sentence-transformers/all-MiniLM-L12-v2', | |
| 'cyclone/simcse-chinese-roberta-wwm-ext' | |
| ] | |
| class SBert: | |
| def __init__(self, path): | |
| print(f'Loading model from {path} ...') | |
| self.model = SentenceTransformer(path, device=DEVICE) | |
| def __call__(self, x) -> torch.Tensor: | |
| y = self.model.encode(x, convert_to_tensor=True) | |
| return y | |