Qifan Zhang
commited on
Commit
·
d654474
1
Parent(s):
3f6f474
add flexibility pipeline, update something
Browse files- app.py +46 -23
- description.txt +4 -0
- output.csv +5 -13
- utils/models.py +6 -0
- utils/pipeline.py +35 -0
- utils/similarity.py +0 -25
app.py
CHANGED
|
@@ -4,7 +4,8 @@ from typing import Optional
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
-
from utils
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
|
@@ -17,22 +18,45 @@ def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
|
| 17 |
return df
|
| 18 |
|
| 19 |
|
| 20 |
-
def process(
|
|
|
|
| 21 |
text: str,
|
| 22 |
file=None,
|
| 23 |
):
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
model_name_input = gr.components.Textbox(
|
| 38 |
value='paraphrase-multilingual-MiniLM-L12-v2',
|
|
@@ -40,18 +64,14 @@ model_name_input = gr.components.Textbox(
|
|
| 40 |
type='text'
|
| 41 |
)
|
| 42 |
|
| 43 |
-
|
| 44 |
label='Model Name',
|
| 45 |
-
value=
|
| 46 |
-
choices=
|
| 47 |
-
'paraphrase-multilingual-MiniLM-L12-v2',
|
| 48 |
-
'paraphrase-multilingual-mpnet-base-v2',
|
| 49 |
-
'cyclone/simcse-chinese-roberta-wwm-ext'
|
| 50 |
-
]
|
| 51 |
)
|
| 52 |
|
| 53 |
text_input = gr.components.Textbox(
|
| 54 |
-
value='prompt,response\n',
|
| 55 |
lines=10,
|
| 56 |
type='text'
|
| 57 |
)
|
|
@@ -61,13 +81,16 @@ text_output = gr.components.Textbox(
|
|
| 61 |
type='text'
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
file_output = gr.components.File(label='Output File',
|
| 65 |
file_count='single',
|
| 66 |
file_types=['', '.', '.csv', '.xls', '.xlsx'])
|
| 67 |
|
| 68 |
app = gr.Interface(
|
| 69 |
fn=process,
|
| 70 |
-
inputs=[
|
| 71 |
-
outputs=[text_output, file_output]
|
|
|
|
| 72 |
)
|
| 73 |
app.launch()
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
+
from utils import pipeline
|
| 8 |
+
from utils.models import list_models
|
| 9 |
|
| 10 |
|
| 11 |
def read_data(filepath: str) -> Optional[pd.DataFrame]:
|
|
|
|
| 18 |
return df
|
| 19 |
|
| 20 |
|
| 21 |
+
def process(task_name: str,
|
| 22 |
+
model_name: str,
|
| 23 |
text: str,
|
| 24 |
file=None,
|
| 25 |
):
|
| 26 |
+
try:
|
| 27 |
+
# load file
|
| 28 |
+
if file:
|
| 29 |
+
df = read_data(file.name)
|
| 30 |
+
elif text:
|
| 31 |
+
string_io = StringIO(text)
|
| 32 |
+
df = pd.read_csv(string_io)
|
| 33 |
+
assert len(df) >= 1, 'No input data'
|
| 34 |
+
else:
|
| 35 |
+
raise Exception('No input data')
|
| 36 |
+
|
| 37 |
+
# process
|
| 38 |
+
if task_name == 'Originality':
|
| 39 |
+
df = pipeline.p0_originality(df, model_name)
|
| 40 |
+
elif task_name == 'Flexibility':
|
| 41 |
+
df = pipeline.p1_flexibility(df, model_name)
|
| 42 |
+
else:
|
| 43 |
+
raise Exception('Task not supported')
|
| 44 |
+
|
| 45 |
+
# save
|
| 46 |
+
path = 'output.csv'
|
| 47 |
+
df.to_csv(path, index=False, encoding='utf-8-sig')
|
| 48 |
+
return str(df), path
|
| 49 |
+
except Exception as e:
|
| 50 |
+
return {'Error': e}, None
|
| 51 |
+
|
| 52 |
|
| 53 |
+
instructions = 'Please upload a file or paste the text below. '
|
| 54 |
+
|
| 55 |
+
task_name_dropdown = gr.components.Dropdown(
|
| 56 |
+
label='Task Name',
|
| 57 |
+
value='Originality',
|
| 58 |
+
choices=['Originality', 'Flexibility']
|
| 59 |
+
)
|
| 60 |
|
| 61 |
model_name_input = gr.components.Textbox(
|
| 62 |
value='paraphrase-multilingual-MiniLM-L12-v2',
|
|
|
|
| 64 |
type='text'
|
| 65 |
)
|
| 66 |
|
| 67 |
+
model_name_dropdown = gr.components.Dropdown(
|
| 68 |
label='Model Name',
|
| 69 |
+
value=list_models[0],
|
| 70 |
+
choices=list_models
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
)
|
| 72 |
|
| 73 |
text_input = gr.components.Textbox(
|
| 74 |
+
value='id,prompt,response\n',
|
| 75 |
lines=10,
|
| 76 |
type='text'
|
| 77 |
)
|
|
|
|
| 81 |
type='text'
|
| 82 |
)
|
| 83 |
|
| 84 |
+
description = open('description.txt', 'r').read()
|
| 85 |
+
|
| 86 |
file_output = gr.components.File(label='Output File',
|
| 87 |
file_count='single',
|
| 88 |
file_types=['', '.', '.csv', '.xls', '.xlsx'])
|
| 89 |
|
| 90 |
app = gr.Interface(
|
| 91 |
fn=process,
|
| 92 |
+
inputs=[task_name_dropdown, model_name_dropdown, text_input, 'file'],
|
| 93 |
+
outputs=[text_output, file_output],
|
| 94 |
+
description=description
|
| 95 |
)
|
| 96 |
app.launch()
|
description.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Enter your participant (id) + prompt + response data, one per line, with a COMMA between each variable
|
| 2 |
+
If an error occurred, try simplifying your data - does it work with fewer rows? If not, the input format may be wrong.
|
| 3 |
+
Please note that Sbert_mpnet and Sbert_minilm are applicable to multiple languages, SimCSE is only applicable to Chinese.
|
| 4 |
+
For more help, or to report possible bugs in our system, contact ydd409@163.com
|
output.csv
CHANGED
|
@@ -1,13 +1,5 @@
|
|
| 1 |
-
prompt,
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
床单,包裹东西,0.41448450088500977
|
| 7 |
-
床单,裁剪成衣服,0.5791812241077423
|
| 8 |
-
牙刷,用来刷首饰,0.5138461589813232
|
| 9 |
-
牙刷,刷鞋,0.5954866111278534
|
| 10 |
-
牙刷,洗水果,0.6339634656906128
|
| 11 |
-
牙刷,捅人,0.5337955951690674
|
| 12 |
-
牙刷,洗马桶,0.5022678673267365
|
| 13 |
-
牙刷,刷桃子的毛,0.6439318358898163
|
|
|
|
| 1 |
+
id,prompt,flexibility
|
| 2 |
+
1,床单,0.60231946905454
|
| 3 |
+
1,牙刷,0.5810987452665964
|
| 4 |
+
2,床单,0.585410421093305
|
| 5 |
+
2,牙刷,0.5599984327952067
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/models.py
CHANGED
|
@@ -6,6 +6,12 @@ from sentence_transformers import SentenceTransformer
|
|
| 6 |
|
| 7 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
class SBert:
|
| 11 |
def __init__(self, path):
|
|
|
|
| 6 |
|
| 7 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
|
| 9 |
+
list_models = [
|
| 10 |
+
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2',
|
| 11 |
+
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
| 12 |
+
'cyclone/simcse-chinese-roberta-wwm-ext'
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
|
| 16 |
class SBert:
|
| 17 |
def __init__(self, path):
|
utils/pipeline.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sentence_transformers.util import cos_sim
|
| 3 |
+
|
| 4 |
+
from utils.models import SBert
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def p0_originality(df: pd.DataFrame, model_name: str) -> pd.DataFrame:
|
| 8 |
+
assert 'prompt' in df.columns
|
| 9 |
+
assert 'response' in df.columns
|
| 10 |
+
model = SBert(model_name)
|
| 11 |
+
|
| 12 |
+
def get_cos_sim(model, prompt: str, response: str) -> float:
|
| 13 |
+
prompt_vec = model(prompt)
|
| 14 |
+
response_vec = model(response)
|
| 15 |
+
score = cos_sim(prompt_vec, response_vec).item()
|
| 16 |
+
return score
|
| 17 |
+
|
| 18 |
+
df['originality'] = df.apply(lambda x: 1 - get_cos_sim(model, x['prompt'], x['response']), axis=1)
|
| 19 |
+
return df
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def p1_flexibility(df: pd.DataFrame, model_name: str) -> pd.DataFrame:
|
| 23 |
+
df = p0_originality(df, model_name)
|
| 24 |
+
assert 'id' in df.columns
|
| 25 |
+
df_out = df.groupby(by=['id', 'prompt']) \
|
| 26 |
+
.agg({'id': 'first', 'prompt': 'first', 'originality': 'mean'}) \
|
| 27 |
+
.rename(columns={'originality': 'flexibility'}) \
|
| 28 |
+
.reset_index(drop=True)
|
| 29 |
+
return df_out
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if __name__ == '__main__':
|
| 33 |
+
_df_input = pd.read_csv('data/example_3.csv')
|
| 34 |
+
_df_0 = p0_originality(_df_input, 'paraphrase-multilingual-MiniLM-L12-v2')
|
| 35 |
+
_df_1 = p1_flexibility(_df_input, 'paraphrase-multilingual-MiniLM-L12-v2')
|
utils/similarity.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
from sentence_transformers.util import cos_sim
|
| 3 |
-
|
| 4 |
-
from utils.models import SBert
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def get_cos_sim(model, prompt: str, response: str) -> float:
|
| 8 |
-
prompt_vec = model(prompt)
|
| 9 |
-
response_vec = model(response)
|
| 10 |
-
score = cos_sim(prompt_vec, response_vec).item()
|
| 11 |
-
return score
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def batch_cos_sim(df: pd.DataFrame, model_name) -> pd.DataFrame:
|
| 15 |
-
# df.columns = ['prompt', 'response']
|
| 16 |
-
assert 'prompt' in df.columns
|
| 17 |
-
assert 'response' in df.columns
|
| 18 |
-
model = SBert(model_name)
|
| 19 |
-
df['originality'] = df.apply(lambda x: 1 - get_cos_sim(model, x['prompt'], x['response']), axis=1)
|
| 20 |
-
return df
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if __name__ == '__main__':
|
| 24 |
-
_df = pd.read_csv('data/example_1.csv')
|
| 25 |
-
_df_o = batch_cos_sim(_df, 'paraphrase-multilingual-MiniLM-L12-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|