Spaces:
Running
on
L40S
Running
on
L40S
| from dataclasses import dataclass, field | |
| from typing import Literal | |
| import torch | |
| from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerFast | |
| IM_START_TOKEN = "<|im_start|>" | |
| IM_END_TOKEN = "<|im_end|>" | |
| SEMANTIC_TOKEN = "<|semantic|>" | |
| MEL_TOKEN = "<|mel|>" | |
| PHONEME_START_TOKEN = "<|phoneme_start|>" | |
| PHONEME_END_TOKEN = "<|phoneme_end|>" | |
| ALL_SPECIAL_TOKENS = [ | |
| IM_START_TOKEN, | |
| IM_END_TOKEN, | |
| SEMANTIC_TOKEN, | |
| MEL_TOKEN, | |
| PHONEME_START_TOKEN, | |
| PHONEME_END_TOKEN, | |
| ] | |
| CODEBOOK_PAD_TOKEN_ID = 0 | |
| class FishTokenizerConfig(PretrainedConfig): | |
| share_codebook_embeddings: bool = True | |
| codebook_size: int = 1024 | |
| num_codebooks: int = 8 | |
| class FishTokenizerFast(PreTrainedTokenizerFast): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.share_codebook_embeddings = kwargs.pop("share_codebook_embeddings", True) | |
| self.codebook_size = kwargs.pop("codebook_size", 1024) | |
| self.num_codebooks = kwargs.pop("num_codebooks", 8) | |
| AutoTokenizer.register(FishTokenizerConfig, fast_tokenizer_class=FishTokenizerFast) | |
| class BasePart: | |
| pass | |
| class VQPart(BasePart): | |
| codes: torch.Tensor | |
| class TextPart(BasePart): | |
| text: str | |
| class MelPart(BasePart): | |
| mels: torch.Tensor | |
| class EncodedMessage: | |
| tokens: torch.Tensor | |
| labels: torch.Tensor | |
| vq_parts: list[torch.Tensor] | |
| mel_parts: list[torch.Tensor] | |
| vq_require_losses: torch.Tensor | None = None | |
| class Message: | |
| role: Literal["system", "user", "assistant"] | |
| parts: list[VQPart | TextPart | MelPart] = field(default_factory=list) | |
| add_im_start: bool = True | |
| add_im_end: bool = True | |
| cal_loss: bool = False | |
| # By default, ignore the loss of the auto-generated im_start token | |
| ignore_im_start_loss: bool = True | |
| def encode( | |
| self: "Message", | |
| tokenizer: AutoTokenizer, | |
| ) -> EncodedMessage: | |
| all_tokens = [] | |
| all_labels = [] | |
| # Multi-modal tokens | |
| vq_parts = [] | |
| mel_parts = [] | |
| semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | |
| [SEMANTIC_TOKEN, MEL_TOKEN] | |
| ) | |
| parts = self.parts.copy() | |
| if self.add_im_start: | |
| parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n")) | |
| if self.add_im_end: | |
| parts.append(TextPart(text="<|im_end|>")) | |
| for part in parts: | |
| if isinstance(part, TextPart): | |
| tokens = tokenizer.encode( | |
| part.text, | |
| add_special_tokens=False, | |
| truncation=False, | |
| return_tensors="pt", | |
| ).int()[0] | |
| elif isinstance(part, VQPart): | |
| tokens = torch.zeros(part.codes.shape[1], dtype=torch.int) + semantic_id | |
| codes = part.codes.clone() + 1 | |
| if getattr(tokenizer, "share_codebook_embeddings", True) is False: | |
| for i in range(len(codes)): | |
| codes[i] += tokenizer.codebook_size * i | |
| vq_parts.append(codes) | |
| elif isinstance(part, MelPart): | |
| tokens = torch.zeros(part.mels.shape[1], dtype=torch.int) + mel_id | |
| mel_parts.append(part.mels) | |
| else: | |
| raise ValueError(f"Unsupported part type: {type(part)}") | |
| all_tokens.append(tokens) | |
| if self.cal_loss: | |
| all_labels.append(tokens.clone()) | |
| else: | |
| all_labels.append(torch.full_like(tokens, -100)) | |
| tokens = torch.cat(all_tokens, dim=0) | |
| labels = torch.cat(all_labels, dim=0) | |
| assert tokens.shape == labels.shape | |
| if self.ignore_im_start_loss and self.add_im_start: | |
| labels[: len(all_tokens[0])] = -100 | |
| return EncodedMessage( | |
| tokens=tokens, | |
| labels=labels, | |
| vq_parts=vq_parts, | |
| mel_parts=mel_parts, | |
| ) | |
| class Conversation: | |
| messages: list[Message] | |
| def encode( | |
| self: "Conversation", | |
| tokenizer: AutoTokenizer, | |
| add_shift: bool = True, | |
| ) -> EncodedMessage: | |
| # Build the input_ids and labels | |
| tokens = [] | |
| labels = [] | |
| vq_parts = [] | |
| mel_parts = [] | |
| vq_require_losses = [] | |
| for message in self.messages: | |
| encoded = message.encode( | |
| tokenizer, | |
| ) | |
| tokens.append(encoded.tokens) | |
| labels.append(encoded.labels) | |
| vq_parts.extend(encoded.vq_parts) | |
| mel_parts.extend(encoded.mel_parts) | |
| vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts)) | |
| tokens = torch.cat(tokens, dim=0) | |
| labels = torch.cat(labels, dim=0) | |
| vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool) | |
| if add_shift: | |
| tokens = tokens[:-1] | |
| labels = labels[1:] | |
| assert tokens.dtype in [ | |
| torch.int, | |
| torch.long, | |
| ], f"Invalid dtype: {tokens.dtype}, conv: {conversation}" | |
| return EncodedMessage( | |
| tokens=tokens, | |
| labels=labels, | |
| vq_parts=vq_parts, | |
| mel_parts=mel_parts, | |
| vq_require_losses=vq_require_losses, | |
| ) | |
| def encode_for_inference( | |
| self: "Conversation", | |
| tokenizer: AutoTokenizer, | |
| num_codebooks: int, | |
| ) -> EncodedMessage: | |
| encoded = self.encode(tokenizer, add_shift=False) | |
| tokens = encoded.tokens | |
| values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int) | |
| values[0] = tokens | |
| if encoded.vq_parts is None or len(encoded.vq_parts) == 0: | |
| return values | |
| semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | |
| [SEMANTIC_TOKEN, MEL_TOKEN] | |
| ) | |
| vq_parts = encoded.vq_parts | |
| vq_parts = torch.cat(vq_parts, dim=1) | |
| values[1:, tokens == semantic_id] = vq_parts | |
| return values | |
| def visualize(self: "Conversation", tokenizer: AutoTokenizer): | |
| encoded = self.encode(tokenizer, add_shift=False) | |
| print_in_blue = lambda x: print("\033[94m" + x + "\033[0m", end="") | |
| print_in_green = lambda x: print("\033[92m" + x + "\033[0m", end="") | |
| for tok, lab in zip(encoded.tokens, encoded.labels): | |
| val = tokenizer.decode(tok, skip_special_tokens=False) | |
| if val == "\n": | |
| val = "\\n\n" | |
| if lab == -100: | |
| print_in_green(val) | |
| else: | |
| print_in_blue(val) | |
| print() | |
| if __name__ == "__main__": | |
| message0 = Message( | |
| role="user", | |
| parts=[ | |
| TextPart(text="Hello, how are you?"), | |
| VQPart(codes=torch.zeros((4, 10))), | |
| ], | |
| cal_loss=False, | |
| ) | |
| message1 = Message( | |
| role="assistant", | |
| parts=[TextPart(text="I'm fine, thank you.")], | |
| cal_loss=True, | |
| ) | |
| conversation = Conversation([message0, message1]) | |
| tokenizer = AutoTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct") | |
| conversation.visualize(tokenizer) | |
| encoded = conversation.encode(tokenizer) | |
| print(encoded) | |
| print(tokenizer.batch_decode(encoded.tokens)) | |