Spaces:
Running
on
L40S
Running
on
L40S
| import dataclasses | |
| import json | |
| import math | |
| from collections import OrderedDict | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from loguru import logger | |
| from torch import Tensor | |
| from torch.nn import functional as F | |
| from torch.nn.attention import SDPBackend, sdpa_kernel | |
| from torch.utils.checkpoint import checkpoint | |
| from transformers import AutoTokenizer | |
| from fish_speech.conversation import SEMANTIC_TOKEN | |
| from fish_speech.utils import RankedLogger | |
| from .lora import LoraConfig, setup_lora | |
| log = RankedLogger(__name__, rank_zero_only=True) | |
| def find_multiple(n: int, k: int) -> int: | |
| if n % k == 0: | |
| return n | |
| return n + k - (n % k) | |
| class BaseModelArgs: | |
| model_type: str = "base" | |
| vocab_size: int = 32000 | |
| n_layer: int = 32 | |
| n_head: int = 32 | |
| dim: int = 4096 | |
| intermediate_size: int = None | |
| n_local_heads: int = -1 | |
| head_dim: int = 64 | |
| rope_base: float = 10000 | |
| norm_eps: float = 1e-5 | |
| max_seq_len: int = 2048 | |
| dropout: float = 0.0 | |
| tie_word_embeddings: bool = True | |
| attention_qkv_bias: bool = False | |
| # Codebook configs | |
| codebook_size: int = 160 | |
| num_codebooks: int = 4 | |
| # Gradient checkpointing | |
| use_gradient_checkpointing: bool = True | |
| # Initialize the model | |
| initializer_range: float = 0.02 | |
| # Dummy vars | |
| is_reward_model: bool = False | |
| share_codebook_embeddings: bool = True | |
| def __post_init__(self): | |
| if self.n_local_heads == -1: | |
| self.n_local_heads = self.n_head | |
| if self.intermediate_size is None: | |
| hidden_dim = 4 * self.dim | |
| n_hidden = int(2 * hidden_dim / 3) | |
| self.intermediate_size = find_multiple(n_hidden, 256) | |
| self.head_dim = self.dim // self.n_head | |
| def from_pretrained(path: str): | |
| path = Path(path) | |
| if path.is_dir(): | |
| path = path / "config.json" | |
| with open(path, "r", encoding="utf-8") as f: | |
| data = json.load(f) | |
| match data["model_type"]: | |
| case "naive": | |
| cls = NaiveModelArgs | |
| case "dual_ar": | |
| cls = DualARModelArgs | |
| case _: | |
| raise ValueError(f"Unknown model type: {data['model_type']}") | |
| return cls(**data) | |
| def save(self, path: str): | |
| with open(path, "w") as f: | |
| json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False) | |
| class NaiveModelArgs(BaseModelArgs): | |
| model_type: str = "naive" | |
| class DualARModelArgs(BaseModelArgs): | |
| model_type: str = "dual_ar" | |
| n_fast_layer: int = 4 | |
| fast_dim: int | None = None | |
| fast_n_head: int | None = None | |
| fast_n_local_heads: int | None = None | |
| fast_head_dim: int | None = None | |
| fast_intermediate_size: int | None = None | |
| fast_attention_qkv_bias: bool | None = None | |
| def __post_init__(self): | |
| super().__post_init__() | |
| self.fast_dim = self.fast_dim or self.dim | |
| self.fast_n_head = self.fast_n_head or self.n_head | |
| self.fast_n_local_heads = self.fast_n_local_heads or self.n_local_heads | |
| self.fast_head_dim = self.fast_head_dim or self.head_dim | |
| self.fast_intermediate_size = ( | |
| self.fast_intermediate_size or self.intermediate_size | |
| ) | |
| self.fast_attention_qkv_bias = ( | |
| self.fast_attention_qkv_bias | |
| if self.fast_attention_qkv_bias is not None | |
| else self.attention_qkv_bias | |
| ) | |
| class KVCache(nn.Module): | |
| def __init__( | |
| self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16 | |
| ): | |
| super().__init__() | |
| cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim) | |
| self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) | |
| self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) | |
| def update(self, input_pos, k_val, v_val): | |
| # input_pos: [S], k_val: [B, H, S, D] | |
| assert input_pos.shape[0] == k_val.shape[2] | |
| k_out = self.k_cache | |
| v_out = self.v_cache | |
| k_out[:, :, input_pos] = k_val | |
| v_out[:, :, input_pos] = v_val | |
| return k_out, v_out | |
| class TransformerForwardResult: | |
| token_logits: Tensor | |
| codebook_logits: Tensor | |
| class BaseTransformerForwardResult: | |
| logits: Tensor | |
| hidden_states: Tensor | |
| class BaseTransformer(nn.Module): | |
| def __init__( | |
| self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True | |
| ) -> None: | |
| super().__init__() | |
| self.config = config | |
| self.tokenizer = tokenizer | |
| self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN) | |
| # Slow transformer | |
| self.embeddings = nn.Embedding( | |
| config.vocab_size, | |
| config.dim, | |
| ) | |
| self.codebook_embeddings = nn.Embedding( | |
| config.codebook_size * config.num_codebooks, | |
| config.dim, | |
| ) | |
| self.layers = nn.ModuleList( | |
| TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer) | |
| ) | |
| self.norm = RMSNorm(config.dim, eps=config.norm_eps) | |
| if self.config.tie_word_embeddings is False: | |
| self.output = nn.Linear( | |
| config.dim, | |
| config.vocab_size, | |
| bias=False, | |
| ) | |
| self.register_buffer( | |
| "freqs_cis", | |
| precompute_freqs_cis( | |
| config.max_seq_len, | |
| config.dim // config.n_head, | |
| config.rope_base, | |
| ), | |
| persistent=False, | |
| ) | |
| self.register_buffer( | |
| "causal_mask", | |
| torch.tril( | |
| torch.ones( | |
| config.max_seq_len, | |
| config.max_seq_len, | |
| dtype=torch.bool, | |
| ) | |
| ), | |
| persistent=False, | |
| ) | |
| # For kv cache | |
| self.max_batch_size = -1 | |
| self.max_seq_len = -1 | |
| if init_weights: | |
| self.apply(self._init_weights) | |
| def setup_caches( | |
| self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 | |
| ): | |
| if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size: | |
| return | |
| head_dim = self.config.dim // self.config.n_head | |
| max_seq_len = find_multiple(max_seq_len, 8) | |
| self.max_seq_len = max_seq_len | |
| self.max_batch_size = max_batch_size | |
| for b in self.layers: | |
| b.attention.kv_cache = KVCache( | |
| max_batch_size, | |
| max_seq_len, | |
| self.config.n_local_heads, | |
| head_dim, | |
| dtype=dtype, | |
| ) | |
| def embed(self, x: Tensor) -> Tensor: | |
| vocab_embeds = [self.embeddings(x[:, 0])] | |
| for i in range(self.config.num_codebooks): | |
| emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size) | |
| emb[x[:, 0] != self.semantic_token_id] = 0 | |
| vocab_embeds.append(emb) | |
| x = torch.stack(vocab_embeds, dim=3) | |
| x = x.sum(dim=3) | |
| return x | |
| def forward( | |
| self, | |
| inp: Tensor, | |
| key_padding_mask: Optional[Tensor] = None, | |
| ) -> BaseTransformerForwardResult: | |
| seq_len = inp.size(2) | |
| # Here we want to merge the embeddings of the codebooks | |
| x = self.embed(inp) | |
| freqs_cis = self.freqs_cis[:seq_len] | |
| # Not that the causal mask here follows the definition of scaled_dot_product_attention | |
| # That is, FALSE means masked out | |
| # To maintain consistency, key_padding_mask use TRUE to mask out | |
| mask = None | |
| if key_padding_mask is not None: | |
| mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K) | |
| mask = mask & key_padding_mask[:, None, None, :].logical_not() | |
| for layer in self.layers: | |
| if self.config.use_gradient_checkpointing and self.training: | |
| x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True) | |
| else: | |
| x = layer(x, freqs_cis, mask) | |
| # We got slow_out here | |
| slow_out = self.norm(x) | |
| if self.config.tie_word_embeddings: | |
| token_logits = F.linear(slow_out, self.embeddings.weight) | |
| else: | |
| token_logits = self.output(slow_out) | |
| return BaseTransformerForwardResult( | |
| logits=token_logits, | |
| hidden_states=x, | |
| ) | |
| def forward_generate( | |
| self, | |
| x: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| return_all: bool = False, | |
| ) -> BaseTransformerForwardResult: | |
| # This is used for generation, optimized for torch compile | |
| assert ( | |
| self.max_seq_len != -1 and self.max_batch_size != -1 | |
| ), "Please call setup_caches before forward_generate" | |
| x = self.embed(x) | |
| mask = self.causal_mask[ | |
| None, None, input_pos, : self.max_seq_len | |
| ] # (B, N, Q, K) | |
| freqs_cis = self.freqs_cis[input_pos] | |
| for layer in self.layers: | |
| x = layer(x, freqs_cis, mask, input_pos=input_pos) | |
| # If prefill, we only calculate the logits of last token | |
| if x.size(1) > 1 and not return_all: | |
| x = x[:, -1:] | |
| # We got slow_out here | |
| slow_out = self.norm(x) | |
| if self.config.tie_word_embeddings: | |
| token_logits = F.linear(slow_out, self.embeddings.weight) | |
| else: | |
| token_logits = self.output(slow_out) | |
| return BaseTransformerForwardResult( | |
| logits=token_logits, | |
| hidden_states=x, | |
| ) | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def from_pretrained( | |
| path: str, | |
| load_weights: bool = False, | |
| max_length: int | None = None, | |
| lora_config: LoraConfig | None = None, | |
| rope_base: int | None = None, | |
| ) -> "BaseTransformer": | |
| config = BaseModelArgs.from_pretrained(str(path)) | |
| if max_length is not None: | |
| config.max_seq_len = max_length | |
| log.info(f"Override max_seq_len to {max_length}") | |
| if rope_base is not None: | |
| config.rope_base = rope_base | |
| log.info(f"Override rope_base to {rope_base}") | |
| match config.model_type: | |
| case "naive": | |
| model_cls = NaiveTransformer | |
| case "dual_ar": | |
| model_cls = DualARTransformer | |
| case _: | |
| raise ValueError(f"Unknown model type: {config.model_type}") | |
| tokenizer = AutoTokenizer.from_pretrained(str(path)) | |
| log.info(f"Loading model from {path}, config: {config}") | |
| model = model_cls(config, tokenizer=tokenizer) | |
| if lora_config is not None: | |
| setup_lora(model, lora_config) | |
| log.info(f"LoRA setup: {lora_config}") | |
| if load_weights is False: | |
| log.info("Randomly initialized model") | |
| else: | |
| if "int8" in str(Path(path)): | |
| logger.info("Using int8 weight-only quantization!") | |
| from tools.llama.quantize import WeightOnlyInt8QuantHandler | |
| simple_quantizer = WeightOnlyInt8QuantHandler(model) | |
| model = simple_quantizer.convert_for_runtime() | |
| if "int4" in str(Path(path)): | |
| logger.info("Using int4 quantization!") | |
| path_comps = path.name.split("-") | |
| assert path_comps[-2].startswith("g") | |
| groupsize = int(path_comps[-2][1:]) | |
| from tools.llama.quantize import WeightOnlyInt4QuantHandler | |
| simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) | |
| model = simple_quantizer.convert_for_runtime() | |
| weights = torch.load( | |
| Path(path) / "model.pth", | |
| map_location="cpu", | |
| mmap=True, | |
| weights_only=True, | |
| ) | |
| if "state_dict" in weights: | |
| logger.warning( | |
| "Using a TextToSemantic LightningModule checkpoint, " | |
| "please make sure it is a full model, not a LoRA model." | |
| ) | |
| weights = weights["state_dict"] | |
| if next(iter(weights.keys())).startswith("model."): | |
| logger.info( | |
| f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys" | |
| ) | |
| new_weights = OrderedDict() | |
| for k, v in weights.items(): | |
| new_weights[k.replace("model.", "")] = v | |
| weights = new_weights | |
| # Verify the name and shape of parameters since strict=False in load_state_dict. | |
| for k, v in model.named_parameters(): | |
| if k not in weights: | |
| logger.warning(f"No weight for {k}") | |
| elif v.shape != weights[k].shape: | |
| logger.warning( | |
| f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}" | |
| ) | |
| err = model.load_state_dict(weights, strict=False, assign=True) | |
| log.info(f"Loaded weights with error: {err}") | |
| return model | |
| def save_pretrained(self, path: str, drop_lora: bool = False): | |
| path = Path(path) | |
| path.mkdir(parents=True, exist_ok=True) | |
| self.config.save(path / "config.json") | |
| state_dict = self.state_dict() | |
| if drop_lora: | |
| for key in list(state_dict.keys()): | |
| if "lora" not in key: | |
| continue | |
| state_dict.pop(key) | |
| log.info(f"Drop LoRA parameter: {key}") | |
| torch.save(state_dict, path / "model.pth") | |
| self.tokenizer.save_pretrained(path) | |
| class NaiveTransformer(BaseTransformer): | |
| def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: | |
| super().__init__(config, init_weights=False, tokenizer=tokenizer) | |
| self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
| self.codebook_output = nn.Linear( | |
| config.dim, | |
| config.codebook_size * config.num_codebooks, | |
| bias=False, | |
| ) | |
| self.apply(self._init_weights) | |
| def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult: | |
| token_logits = result.logits | |
| x = result.hidden_states | |
| # Codebook | |
| codebook_logits = self.codebook_output(self.codebook_norm(x)) | |
| codebook_logits = rearrange( | |
| codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks | |
| ) | |
| return TransformerForwardResult( | |
| token_logits=token_logits, | |
| codebook_logits=codebook_logits, | |
| ) | |
| def forward( | |
| self, | |
| inp: Tensor, | |
| key_padding_mask: Optional[Tensor] = None, | |
| ) -> TransformerForwardResult: | |
| result = super().forward( | |
| inp=inp, | |
| key_padding_mask=key_padding_mask, | |
| ) | |
| return self.decode(result) | |
| def forward_generate( | |
| self, x: Tensor, input_pos: Optional[Tensor] = None | |
| ) -> TransformerForwardResult: | |
| result = super().forward_generate(x, input_pos) | |
| return self.decode(result) | |
| class DualARTransformer(BaseTransformer): | |
| def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: | |
| super().__init__(config, init_weights=False, tokenizer=tokenizer) | |
| # Project to fast dim if needed | |
| if config.fast_dim is not None and config.fast_dim != config.dim: | |
| self.fast_project_in = nn.Linear(config.dim, config.fast_dim) | |
| else: | |
| self.fast_project_in = nn.Identity() | |
| # Fast transformer | |
| self.fast_embeddings = nn.Embedding(config.codebook_size, config.fast_dim) | |
| # The equivalent bs is so large that sdpa doesn't work | |
| override_config = dataclasses.replace( | |
| config, | |
| dim=config.fast_dim, | |
| n_head=config.fast_n_head, | |
| n_local_heads=config.fast_n_local_heads, | |
| head_dim=config.fast_head_dim, | |
| intermediate_size=config.fast_intermediate_size, | |
| attention_qkv_bias=config.fast_attention_qkv_bias, | |
| ) | |
| self.fast_layers = nn.ModuleList( | |
| TransformerBlock(override_config, use_sdpa=False) | |
| for _ in range(config.n_fast_layer) | |
| ) | |
| self.fast_norm = RMSNorm(config.fast_dim, eps=config.norm_eps) | |
| self.fast_output = nn.Linear( | |
| config.fast_dim, | |
| config.codebook_size, | |
| bias=False, | |
| ) | |
| self.register_buffer( | |
| "fast_freqs_cis", | |
| precompute_freqs_cis( | |
| config.num_codebooks, | |
| config.fast_dim // config.fast_n_head, | |
| config.rope_base, | |
| ), | |
| persistent=False, | |
| ) | |
| self.apply(self._init_weights) | |
| def setup_caches( | |
| self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 | |
| ): | |
| super().setup_caches(max_batch_size, max_seq_len, dtype) | |
| head_dim = self.config.fast_dim // self.config.fast_n_head | |
| # Fast transformer | |
| # The max seq len here is the number of codebooks | |
| for b in self.fast_layers: | |
| b.attention.kv_cache = KVCache( | |
| max_batch_size, | |
| self.config.num_codebooks, | |
| self.config.fast_n_local_heads, | |
| head_dim, | |
| dtype=dtype, | |
| ) | |
| def forward( | |
| self, | |
| inp: Tensor, | |
| key_padding_mask: Optional[Tensor] = None, | |
| ) -> TransformerForwardResult: | |
| parent_result = super().forward(inp, key_padding_mask) | |
| token_logits = parent_result.logits | |
| x = parent_result.hidden_states | |
| x = self.fast_project_in(x) | |
| # Fast transformer | |
| fast_seq_len = self.config.num_codebooks | |
| fast_mask = self.causal_mask[ | |
| None, None, :fast_seq_len, :fast_seq_len | |
| ] # (B, N, Q, K) | |
| # Drop the last token and rotate left | |
| codebooks = inp[:, 1:-1, 1:] | |
| codebooks = F.pad(codebooks, (0, 1), value=0) | |
| codebook_embeddings = self.fast_embeddings(codebooks) | |
| x = torch.cat([x[:, None], codebook_embeddings], dim=1) | |
| b, s = x.size(0), x.size(2) | |
| x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len | |
| # Remove padded part | |
| codebooks = rearrange(codebooks, "b n s -> (b s) n") | |
| codebook_mask = (codebooks == 0).all(dim=-1) | |
| if torch.all(codebook_mask): | |
| # If all codebooks are padded, we keep first 8 to make sure the model runs | |
| codebook_mask[:8] = False | |
| x_bs, x_len = x.size(0), x.size(1) | |
| x = x[~codebook_mask] | |
| for layer in self.fast_layers: | |
| if self.config.use_gradient_checkpointing and self.training: | |
| x = checkpoint( | |
| layer, x, self.fast_freqs_cis, fast_mask, use_reentrant=True | |
| ) | |
| else: | |
| x = layer(x, self.fast_freqs_cis, fast_mask) | |
| # unflatten the batch and num_codebooks | |
| fast_out = self.fast_norm(x) | |
| codebook_logits = self.fast_output(fast_out) | |
| # Re-pad the codebook_logits | |
| buffer = torch.zeros( | |
| x_bs, | |
| x_len, | |
| codebook_logits.size(-1), | |
| device=codebook_logits.device, | |
| dtype=codebook_logits.dtype, | |
| ) | |
| buffer[~codebook_mask] = codebook_logits | |
| codebook_logits = buffer | |
| assert codebook_logits.shape[1] == self.config.num_codebooks | |
| codebook_logits = rearrange( | |
| codebook_logits, | |
| "(b s) n d -> b s n d", | |
| b=b, | |
| s=s, | |
| n=self.config.num_codebooks, | |
| ) | |
| return TransformerForwardResult( | |
| token_logits=token_logits, | |
| codebook_logits=codebook_logits, | |
| ) | |
| def forward_generate_fast( | |
| self, x: Tensor, input_pos: Optional[Tensor] = None | |
| ) -> Tensor: | |
| # Fast transformer | |
| x = x.view(1, 1, -1) | |
| fast_mask = self.causal_mask[ | |
| None, None, input_pos, : self.config.num_codebooks | |
| ] # (B, N, Q, K) | |
| fast_freqs_cis = self.fast_freqs_cis[input_pos] | |
| for layer in self.fast_layers: | |
| x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos) | |
| # unflatten the batch and num_codebooks | |
| fast_out = self.fast_norm(x) # only take the last token | |
| codebook_logits = self.fast_output(fast_out) | |
| return codebook_logits | |
| def forward_generate( | |
| self, x: Tensor, input_pos: Optional[Tensor] = None | |
| ) -> TransformerForwardResult: | |
| x = super().forward_generate(x, input_pos) | |
| x.hidden_states = self.fast_project_in(x.hidden_states) | |
| return x | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None: | |
| super().__init__() | |
| self.attention = Attention(config, use_sdpa=use_sdpa) | |
| self.feed_forward = FeedForward(config) | |
| self.ffn_norm = RMSNorm(config.dim, config.norm_eps) | |
| self.attention_norm = RMSNorm(config.dim, config.norm_eps) | |
| def forward( | |
| self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None | |
| ) -> Tensor: | |
| h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) | |
| out = h + self.feed_forward(self.ffn_norm(h)) | |
| return out | |
| class Attention(nn.Module): | |
| def __init__(self, config: BaseModelArgs, use_sdpa: bool = True): | |
| super().__init__() | |
| assert config.dim % config.n_head == 0 | |
| total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
| # key, query, value projections for all heads, but in a batch | |
| self.wqkv = nn.Linear( | |
| config.dim, total_head_dim, bias=config.attention_qkv_bias | |
| ) | |
| self.wo = nn.Linear(config.dim, config.dim, bias=False) | |
| self.kv_cache = None | |
| self.dropout = config.dropout | |
| self.n_head = config.n_head | |
| self.head_dim = config.head_dim | |
| self.n_local_heads = config.n_local_heads | |
| self.dim = config.dim | |
| self.use_sdpa = use_sdpa | |
| self._register_load_state_dict_pre_hook(self.load_hook) | |
| def load_hook(self, state_dict, prefix, *args): | |
| if prefix + "wq.weight" in state_dict: | |
| wq = state_dict.pop(prefix + "wq.weight") | |
| wk = state_dict.pop(prefix + "wk.weight") | |
| wv = state_dict.pop(prefix + "wv.weight") | |
| state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
| def forward( | |
| self, | |
| x: Tensor, | |
| freqs_cis: Tensor, | |
| mask: Tensor, | |
| input_pos: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| bsz, seqlen, _ = x.shape | |
| kv_size = self.n_local_heads * self.head_dim | |
| q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | |
| q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
| k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
| q = apply_rotary_emb(q, freqs_cis) | |
| k = apply_rotary_emb(k, freqs_cis) | |
| q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
| if self.kv_cache is not None: | |
| k, v = self.kv_cache.update(input_pos, k, v) | |
| k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
| if self.use_sdpa: | |
| if mask is None: | |
| with sdpa_kernel(SDPBackend.FLASH_ATTENTION): | |
| y = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| is_causal=True, | |
| # No third party attn_mask here to use flash_attention | |
| ) | |
| else: | |
| y = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| ) | |
| else: | |
| y = self.eq_scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout if self.training else 0.0, | |
| ) | |
| y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | |
| return self.wo(y) | |
| def eq_scaled_dot_product_attention( | |
| self, | |
| query, | |
| key, | |
| value, | |
| attn_mask=None, | |
| dropout_p=0.0, | |
| ) -> torch.Tensor: | |
| # This is a standard scaled dot product attention | |
| # It's low efficient, but it doesn't raise cuda error | |
| L, S = query.size(-2), key.size(-2) | |
| scale_factor = 1 / math.sqrt(query.size(-1)) | |
| attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) | |
| if attn_mask is not None: | |
| if attn_mask.dtype == torch.bool: | |
| attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
| else: | |
| attn_bias += attn_mask | |
| attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
| attn_weight += attn_bias | |
| attn_weight = torch.softmax(attn_weight, dim=-1) | |
| attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
| return attn_weight @ value | |
| class FeedForward(nn.Module): | |
| def __init__(self, config: BaseModelArgs) -> None: | |
| super().__init__() | |
| self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
| self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-5): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def _norm(self, x): | |
| return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
| def forward(self, x: Tensor) -> Tensor: | |
| output = self._norm(x.float()).type_as(x) | |
| return output * self.weight | |
| def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: | |
| freqs = 1.0 / ( | |
| base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) | |
| ) | |
| t = torch.arange(seq_len, device=freqs.device) | |
| freqs = torch.outer(t, freqs) | |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
| cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
| return cache.to(dtype=torch.bfloat16) | |
| def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
| xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
| freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
| x_out2 = torch.stack( | |
| [ | |
| xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
| xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
| ], | |
| -1, | |
| ) | |
| x_out2 = x_out2.flatten(3) | |
| return x_out2.type_as(x) | |