Spaces:
Running
on
L40S
Running
on
L40S
| import math | |
| from functools import partial | |
| from math import prod | |
| from typing import Callable | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from torch.nn.utils.parametrizations import weight_norm | |
| from torch.nn.utils.parametrize import remove_parametrizations | |
| from torch.utils.checkpoint import checkpoint | |
| def sequence_mask(length, max_length=None): | |
| if max_length is None: | |
| max_length = length.max() | |
| x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
| return x.unsqueeze(0) < length.unsqueeze(1) | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv1D") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def get_padding(kernel_size, dilation=1): | |
| return (kernel_size * dilation - dilation) // 2 | |
| def unpad1d(x: torch.Tensor, paddings: tuple[int, int]): | |
| """Remove padding from x, handling properly zero padding. Only for 1d!""" | |
| padding_left, padding_right = paddings | |
| assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
| assert (padding_left + padding_right) <= x.shape[-1] | |
| end = x.shape[-1] - padding_right | |
| return x[..., padding_left:end] | |
| def get_extra_padding_for_conv1d( | |
| x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 | |
| ) -> int: | |
| """See `pad_for_conv1d`.""" | |
| length = x.shape[-1] | |
| n_frames = (length - kernel_size + padding_total) / stride + 1 | |
| ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) | |
| return ideal_length - length | |
| def pad1d( | |
| x: torch.Tensor, | |
| paddings: tuple[int, int], | |
| mode: str = "zeros", | |
| value: float = 0.0, | |
| ): | |
| """Tiny wrapper around F.pad, just to allow for reflect padding on small input. | |
| If this is the case, we insert extra 0 padding to the right | |
| before the reflection happen. | |
| """ | |
| length = x.shape[-1] | |
| padding_left, padding_right = paddings | |
| assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
| if mode == "reflect": | |
| max_pad = max(padding_left, padding_right) | |
| extra_pad = 0 | |
| if length <= max_pad: | |
| extra_pad = max_pad - length + 1 | |
| x = F.pad(x, (0, extra_pad)) | |
| padded = F.pad(x, paddings, mode, value) | |
| end = padded.shape[-1] - extra_pad | |
| return padded[..., :end] | |
| else: | |
| return F.pad(x, paddings, mode, value) | |
| class FishConvNet(nn.Module): | |
| def __init__( | |
| self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1 | |
| ): | |
| super(FishConvNet, self).__init__() | |
| self.conv = nn.Conv1d( | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| groups=groups, | |
| ) | |
| self.stride = stride | |
| self.kernel_size = (kernel_size - 1) * dilation + 1 | |
| self.dilation = dilation | |
| def forward(self, x): | |
| pad = self.kernel_size - self.stride | |
| extra_padding = get_extra_padding_for_conv1d( | |
| x, self.kernel_size, self.stride, pad | |
| ) | |
| x = pad1d(x, (pad, extra_padding), mode="constant", value=0) | |
| return self.conv(x).contiguous() | |
| def weight_norm(self, name="weight", dim=0): | |
| self.conv = weight_norm(self.conv, name=name, dim=dim) | |
| return self | |
| def remove_parametrizations(self, name="weight"): | |
| self.conv = remove_parametrizations(self.conv, name) | |
| return self | |
| class FishTransConvNet(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1): | |
| super(FishTransConvNet, self).__init__() | |
| self.conv = nn.ConvTranspose1d( | |
| in_channels, out_channels, kernel_size, stride=stride, dilation=dilation | |
| ) | |
| self.stride = stride | |
| self.kernel_size = kernel_size | |
| def forward(self, x): | |
| x = self.conv(x) | |
| pad = self.kernel_size - self.stride | |
| padding_right = math.ceil(pad) | |
| padding_left = pad - padding_right | |
| x = unpad1d(x, (padding_left, padding_right)) | |
| return x.contiguous() | |
| def weight_norm(self, name="weight", dim=0): | |
| self.conv = weight_norm(self.conv, name=name, dim=dim) | |
| return self | |
| def remove_parametrizations(self, name="weight"): | |
| self.conv = remove_parametrizations(self.conv, name) | |
| return self | |
| class ResBlock1(torch.nn.Module): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super().__init__() | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[0] | |
| ).weight_norm(), | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[1] | |
| ).weight_norm(), | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[2] | |
| ).weight_norm(), | |
| ] | |
| ) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[0] | |
| ).weight_norm(), | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[1] | |
| ).weight_norm(), | |
| FishConvNet( | |
| channels, channels, kernel_size, stride=1, dilation=dilation[2] | |
| ).weight_norm(), | |
| ] | |
| ) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.silu(x) | |
| xt = c1(xt) | |
| xt = F.silu(xt) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_parametrizations(self): | |
| for conv in self.convs1: | |
| conv.remove_parametrizations() | |
| for conv in self.convs2: | |
| conv.remove_parametrizations() | |
| class ParallelBlock(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| kernel_sizes: tuple[int] = (3, 7, 11), | |
| dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
| ): | |
| super().__init__() | |
| assert len(kernel_sizes) == len(dilation_sizes) | |
| self.blocks = nn.ModuleList() | |
| for k, d in zip(kernel_sizes, dilation_sizes): | |
| self.blocks.append(ResBlock1(channels, k, d)) | |
| def forward(self, x): | |
| return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0) | |
| def remove_parametrizations(self): | |
| for block in self.blocks: | |
| block.remove_parametrizations() | |
| class HiFiGANGenerator(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| hop_length: int = 512, | |
| upsample_rates: tuple[int] = (8, 8, 2, 2, 2), | |
| upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2), | |
| resblock_kernel_sizes: tuple[int] = (3, 7, 11), | |
| resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
| num_mels: int = 128, | |
| upsample_initial_channel: int = 512, | |
| pre_conv_kernel_size: int = 7, | |
| post_conv_kernel_size: int = 7, | |
| post_activation: Callable = partial(nn.SiLU, inplace=True), | |
| ): | |
| super().__init__() | |
| assert ( | |
| prod(upsample_rates) == hop_length | |
| ), f"hop_length must be {prod(upsample_rates)}" | |
| self.conv_pre = FishConvNet( | |
| num_mels, | |
| upsample_initial_channel, | |
| pre_conv_kernel_size, | |
| stride=1, | |
| ).weight_norm() | |
| self.num_upsamples = len(upsample_rates) | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.noise_convs = nn.ModuleList() | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| FishTransConvNet( | |
| upsample_initial_channel // (2**i), | |
| upsample_initial_channel // (2 ** (i + 1)), | |
| k, | |
| stride=u, | |
| ).weight_norm() | |
| ) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = upsample_initial_channel // (2 ** (i + 1)) | |
| self.resblocks.append( | |
| ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes) | |
| ) | |
| self.activation_post = post_activation() | |
| self.conv_post = FishConvNet( | |
| ch, 1, post_conv_kernel_size, stride=1 | |
| ).weight_norm() | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def forward(self, x): | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.silu(x, inplace=True) | |
| x = self.ups[i](x) | |
| if self.training and self.checkpointing: | |
| x = checkpoint( | |
| self.resblocks[i], | |
| x, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| x = self.resblocks[i](x) | |
| x = self.activation_post(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_parametrizations(self): | |
| for up in self.ups: | |
| up.remove_parametrizations() | |
| for block in self.resblocks: | |
| block.remove_parametrizations() | |
| self.conv_pre.remove_parametrizations() | |
| self.conv_post.remove_parametrizations() | |
| # DropPath copied from timm library | |
| def drop_path( | |
| x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
| ): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ # noqa: E501 | |
| if drop_prob == 0.0 or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0],) + (1,) * ( | |
| x.ndim - 1 | |
| ) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 | |
| def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
| def extra_repr(self): | |
| return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
| class LayerNorm(nn.Module): | |
| r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
| The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
| shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
| with shape (batch_size, channels, height, width). | |
| """ # noqa: E501 | |
| def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
| self.eps = eps | |
| self.data_format = data_format | |
| if self.data_format not in ["channels_last", "channels_first"]: | |
| raise NotImplementedError | |
| self.normalized_shape = (normalized_shape,) | |
| def forward(self, x): | |
| if self.data_format == "channels_last": | |
| return F.layer_norm( | |
| x, self.normalized_shape, self.weight, self.bias, self.eps | |
| ) | |
| elif self.data_format == "channels_first": | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None] * x + self.bias[:, None] | |
| return x | |
| # ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py | |
| class ConvNeXtBlock(nn.Module): | |
| r"""ConvNeXt Block. There are two equivalent implementations: | |
| (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
| (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
| We use (2) as we find it slightly faster in PyTorch | |
| Args: | |
| dim (int): Number of input channels. | |
| drop_path (float): Stochastic depth rate. Default: 0.0 | |
| layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. | |
| kernel_size (int): Kernel size for depthwise conv. Default: 7. | |
| dilation (int): Dilation for depthwise conv. Default: 1. | |
| """ # noqa: E501 | |
| def __init__( | |
| self, | |
| dim: int, | |
| drop_path: float = 0.0, | |
| layer_scale_init_value: float = 1e-6, | |
| mlp_ratio: float = 4.0, | |
| kernel_size: int = 7, | |
| dilation: int = 1, | |
| ): | |
| super().__init__() | |
| self.dwconv = FishConvNet( | |
| dim, | |
| dim, | |
| kernel_size=kernel_size, | |
| # padding=int(dilation * (kernel_size - 1) / 2), | |
| groups=dim, | |
| ) # depthwise conv | |
| self.norm = LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, int(mlp_ratio * dim) | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| def forward(self, x, apply_residual: bool = True): | |
| input = x | |
| x = self.dwconv(x) | |
| x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) | |
| x = self.drop_path(x) | |
| if apply_residual: | |
| x = input + x | |
| return x | |
| class ConvNeXtEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| input_channels: int = 3, | |
| depths: list[int] = [3, 3, 9, 3], | |
| dims: list[int] = [96, 192, 384, 768], | |
| drop_path_rate: float = 0.0, | |
| layer_scale_init_value: float = 1e-6, | |
| kernel_size: int = 7, | |
| ): | |
| super().__init__() | |
| assert len(depths) == len(dims) | |
| self.downsample_layers = nn.ModuleList() | |
| stem = nn.Sequential( | |
| FishConvNet( | |
| input_channels, | |
| dims[0], | |
| kernel_size=7, | |
| # padding=3, | |
| # padding_mode="replicate", | |
| # padding_mode="zeros", | |
| ), | |
| LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
| ) | |
| self.downsample_layers.append(stem) | |
| for i in range(len(depths) - 1): | |
| mid_layer = nn.Sequential( | |
| LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
| nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), | |
| ) | |
| self.downsample_layers.append(mid_layer) | |
| self.stages = nn.ModuleList() | |
| dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
| cur = 0 | |
| for i in range(len(depths)): | |
| stage = nn.Sequential( | |
| *[ | |
| ConvNeXtBlock( | |
| dim=dims[i], | |
| drop_path=dp_rates[cur + j], | |
| layer_scale_init_value=layer_scale_init_value, | |
| kernel_size=kernel_size, | |
| ) | |
| for j in range(depths[i]) | |
| ] | |
| ) | |
| self.stages.append(stage) | |
| cur += depths[i] | |
| self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv1d, nn.Linear)): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| ) -> torch.Tensor: | |
| for i in range(len(self.downsample_layers)): | |
| x = self.downsample_layers[i](x) | |
| x = self.stages[i](x) | |
| return self.norm(x) | |
| class FireflyArchitecture(nn.Module): | |
| def __init__( | |
| self, | |
| backbone: nn.Module, | |
| head: nn.Module, | |
| quantizer: nn.Module, | |
| spec_transform: nn.Module, | |
| ): | |
| super().__init__() | |
| self.backbone = backbone | |
| self.head = head | |
| self.quantizer = quantizer | |
| self.spec_transform = spec_transform | |
| self.downsample_factor = math.prod(self.quantizer.downsample_factor) | |
| def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor: | |
| if self.spec_transform is not None: | |
| x = self.spec_transform(x) | |
| x = self.backbone(x) | |
| if mask is not None: | |
| x = x * mask | |
| if self.quantizer is not None: | |
| vq_result = self.quantizer(x) | |
| x = vq_result.z | |
| if mask is not None: | |
| x = x * mask | |
| x = self.head(x, template=template) | |
| if x.ndim == 2: | |
| x = x[:, None, :] | |
| if self.vq is not None: | |
| return x, vq_result | |
| return x | |
| def encode(self, audios, audio_lengths): | |
| audios = audios.float() | |
| mels = self.spec_transform(audios) | |
| mel_lengths = audio_lengths // self.spec_transform.hop_length | |
| mel_masks = sequence_mask(mel_lengths, mels.shape[2]) | |
| mel_masks_float_conv = mel_masks[:, None, :].float() | |
| mels = mels * mel_masks_float_conv | |
| # Encode | |
| encoded_features = self.backbone(mels) * mel_masks_float_conv | |
| feature_lengths = mel_lengths // self.downsample_factor | |
| return self.quantizer.encode(encoded_features), feature_lengths | |
| def decode(self, indices, feature_lengths) -> torch.Tensor: | |
| mel_masks = sequence_mask( | |
| feature_lengths * self.downsample_factor, | |
| indices.shape[2] * self.downsample_factor, | |
| ) | |
| mel_masks_float_conv = mel_masks[:, None, :].float() | |
| audio_lengths = ( | |
| feature_lengths * self.downsample_factor * self.spec_transform.hop_length | |
| ) | |
| audio_masks = sequence_mask( | |
| audio_lengths, | |
| indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length, | |
| ) | |
| audio_masks_float_conv = audio_masks[:, None, :].float() | |
| z = self.quantizer.decode(indices) * mel_masks_float_conv | |
| x = self.head(z) * audio_masks_float_conv | |
| return x, audio_lengths | |
| def remove_parametrizations(self): | |
| if hasattr(self.backbone, "remove_parametrizations"): | |
| self.backbone.remove_parametrizations() | |
| if hasattr(self.head, "remove_parametrizations"): | |
| self.head.remove_parametrizations() | |
| def device(self): | |
| return next(self.parameters()).device | |