Spaces:
Running
on
L4
Running
on
L4
| import os | |
| from argparse import ArgumentParser | |
| from pathlib import Path | |
| import pyrootutils | |
| import torch | |
| from loguru import logger | |
| pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
| from fish_speech.inference_engine import TTSInferenceEngine | |
| from fish_speech.models.dac.inference import load_model as load_decoder_model | |
| from fish_speech.models.text2semantic.inference import launch_thread_safe_queue | |
| from fish_speech.utils.schema import ServeTTSRequest | |
| from tools.webui import build_app | |
| from tools.webui.inference import get_inference_wrapper | |
| # Make einx happy | |
| os.environ["EINX_FILTER_TRACEBACK"] = "false" | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--llama-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/openaudio-s1-mini", | |
| ) | |
| parser.add_argument( | |
| "--decoder-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/openaudio-s1-mini/codec.pth", | |
| ) | |
| parser.add_argument("--decoder-config-name", type=str, default="modded_dac_vq") | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--half", action="store_true") | |
| parser.add_argument("--compile", action="store_true") | |
| parser.add_argument("--max-gradio-length", type=int, default=0) | |
| parser.add_argument("--theme", type=str, default="light") | |
| return parser.parse_args() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| args.precision = torch.half if args.half else torch.bfloat16 | |
| # Check if MPS or CUDA is available | |
| if torch.backends.mps.is_available(): | |
| args.device = "mps" | |
| logger.info("mps is available, running on mps.") | |
| elif not torch.cuda.is_available(): | |
| logger.info("CUDA is not available, running on CPU.") | |
| args.device = "cpu" | |
| logger.info("Loading Llama model...") | |
| llama_queue = launch_thread_safe_queue( | |
| checkpoint_path=args.llama_checkpoint_path, | |
| device=args.device, | |
| precision=args.precision, | |
| compile=args.compile, | |
| ) | |
| logger.info("Loading VQ-GAN model...") | |
| decoder_model = load_decoder_model( | |
| config_name=args.decoder_config_name, | |
| checkpoint_path=args.decoder_checkpoint_path, | |
| device=args.device, | |
| ) | |
| logger.info("Decoder model loaded, warming up...") | |
| # Create the inference engine | |
| inference_engine = TTSInferenceEngine( | |
| llama_queue=llama_queue, | |
| decoder_model=decoder_model, | |
| compile=args.compile, | |
| precision=args.precision, | |
| ) | |
| # Dry run to check if the model is loaded correctly and avoid the first-time latency | |
| list( | |
| inference_engine.inference( | |
| ServeTTSRequest( | |
| text="Hello world.", | |
| references=[], | |
| reference_id=None, | |
| max_new_tokens=1024, | |
| chunk_length=200, | |
| top_p=0.7, | |
| repetition_penalty=1.5, | |
| temperature=0.7, | |
| format="wav", | |
| ) | |
| ) | |
| ) | |
| logger.info("Warming up done, launching the web UI...") | |
| # Get the inference function with the immutable arguments | |
| inference_fct = get_inference_wrapper(inference_engine) | |
| app = build_app(inference_fct, args.theme) | |
| app.launch(show_api=True) | |