| '''import os | |
| import uuid | |
| import time | |
| from threading import Thread | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| # Constants | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load olmOCR-7B-0225-preview | |
| MODEL_ID = "allenai/olmOCR-7B-0225-preview" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def generate_image(text: str, image: Image.Image, | |
| max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using olmOCR-7B-0225-preview for image input. | |
| """ | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def save_to_md(output_text): | |
| file_path = f"result_{uuid.uuid4()}.md" | |
| with open(file_path, "w") as f: | |
| f.write(output_text) | |
| return file_path | |
| # Gradio UI | |
| image_examples = [ | |
| ["Convert this page to doc [text] precisely.", "images/3.png"], | |
| ["Convert this page to doc [text] precisely.", "images/4.png"], | |
| ["Convert this page to doc [text] precisely.", "images/1.png"], | |
| ["Convert chart to OTSL.", "images/2.png"] | |
| ] | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **Doc OCR - olmOCR-7B-0225-preview**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image") | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(): | |
| with gr.Column(elem_classes="canvas-output"): | |
| gr.Markdown("## Output") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
| with gr.Accordion("Result.md", open=False): | |
| markdown_output = gr.Markdown(label="(Result.md)") | |
| gr.Markdown("**Model: olmOCR-7B-0225-preview**") | |
| gr.Markdown("> [`olmOCR-7B`](https://huggingface.co/allenai/olmOCR-7B-0225-preview) is optimized for high-fidelity document OCR and LaTeX-aware image-to-text tasks.") | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)''' | |