Spaces:
Runtime error
Runtime error
Commit
·
b478ce2
1
Parent(s):
d63921e
Update Bias Examples
Browse files- apps/examples.py +376 -42
apps/examples.py
CHANGED
|
@@ -1,5 +1,336 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from .utils import Toc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
def app(state=None):
|
| 4 |
toc = Toc()
|
| 5 |
st.header("Table of Contents")
|
|
@@ -11,23 +342,23 @@ def app(state=None):
|
|
| 11 |
|
| 12 |
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 13 |
col1.write("**Custom Question**: What color are the horses?")
|
| 14 |
-
col1.write("**Predicted Answer**: brown
|
| 15 |
|
| 16 |
col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
|
| 17 |
col2.write("**Custom Question**: What color is the cat?")
|
| 18 |
-
col2.write("**Predicted Answer**: white
|
| 19 |
|
| 20 |
col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 21 |
col3.write("**Custom Question**: What color is the man's jacket?")
|
| 22 |
-
col3.write("**Predicted Answer**: black
|
| 23 |
|
| 24 |
col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
|
| 25 |
col1.write("**Actual Question**: What color is the car?")
|
| 26 |
-
col1.write("**Predicted Answer**: blue
|
| 27 |
|
| 28 |
col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
|
| 29 |
col2.write("**Actual Question**: What color is this person's coat?")
|
| 30 |
-
col2.write("**Predicted Answer**: blue
|
| 31 |
|
| 32 |
toc.subheader("Counting Questions")
|
| 33 |
|
|
@@ -35,31 +366,31 @@ def app(state=None):
|
|
| 35 |
|
| 36 |
col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 37 |
col1.write("**Actual Question**: How many zebras are there?")
|
| 38 |
-
col1.write("**Predicted Answer**: 0
|
| 39 |
|
| 40 |
col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 41 |
col2.write("**Custom Question**: How many giraffes are there?")
|
| 42 |
-
col2.write("**Predicted Answer**: 2
|
| 43 |
|
| 44 |
col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 45 |
col3.write("**Custom Question**: How many teddy bears are present in the image?")
|
| 46 |
-
col3.write("**Predicted Answer**: 3
|
| 47 |
|
| 48 |
col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
|
| 49 |
col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
|
| 50 |
col1.write("**English Translation**: How many candles are in the cupcake?")
|
| 51 |
-
col1.write("**Predicted Answer**: 0
|
| 52 |
|
| 53 |
col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
|
| 54 |
col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
|
| 55 |
col1.write("**English Translation**: How many people are you taking a picture of?")
|
| 56 |
-
col1.write("**Predicted Answer**: 10
|
| 57 |
|
| 58 |
toc.subheader("Size/Shape Questions")
|
| 59 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 60 |
col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
|
| 61 |
col1.write("**Actual Question**: What shape is the vase? ")
|
| 62 |
-
col1.write("**Predicted Answer**: round
|
| 63 |
|
| 64 |
|
| 65 |
toc.subheader("Yes/No Questions")
|
|
@@ -68,58 +399,58 @@ def app(state=None):
|
|
| 68 |
col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 69 |
col1.write("**Actual Question**: Sind das drei Teddybären?")
|
| 70 |
col1.write("**English Translation**: Are those teddy bears?")
|
| 71 |
-
col1.write("**Predicted Answer**: Ja (yes)
|
| 72 |
|
| 73 |
col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
|
| 74 |
col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
|
| 75 |
col2.write("**English Translation**: Did they take it in winter?")
|
| 76 |
-
col2.write("**Predicted Answer**: si (yes)
|
| 77 |
|
| 78 |
col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
|
| 79 |
col3.write("**Actual Question**: Is the clock ornate? ")
|
| 80 |
-
col3.write("**Predicted Answer**: yes
|
| 81 |
|
| 82 |
col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
|
| 83 |
col1.write("**Actual Question**: Ist das Gebäude orniert?")
|
| 84 |
col1.write("**English Translation**: Is the building decorated?")
|
| 85 |
-
col1.write("**Predicted Answer**: Ja (yes)
|
| 86 |
|
| 87 |
col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
|
| 88 |
col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
|
| 89 |
col2.write("**English Translation**: Is that a commuter train?")
|
| 90 |
-
col2.write("**Predicted Answer**: Ja (yes)
|
| 91 |
|
| 92 |
col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
|
| 93 |
col3.write("**Actual Question**: Elle est dans un restaurant?")
|
| 94 |
col3.write("**English Translation**: Is she in a restaurant?")
|
| 95 |
-
col3.write("**Predicted Answer**: Oui (yes)
|
| 96 |
|
| 97 |
col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
|
| 98 |
col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
|
| 99 |
col1.write("**English Translation**: Are the giraffe's eyes closed?")
|
| 100 |
-
col1.write("**Predicted Answer**: Oui (yes)
|
| 101 |
|
| 102 |
toc.subheader("Negatives Test")
|
| 103 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 104 |
col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 105 |
|
| 106 |
col2.write("**Actual Question**: Is the man happy?")
|
| 107 |
-
col2.write("**Predicted Answer**: Yes
|
| 108 |
|
| 109 |
col3.write("**Actual Question**: Is the man not happy?")
|
| 110 |
-
col3.write("**Predicted Answer**: Yes
|
| 111 |
|
| 112 |
col2.write("**Actual Question**: Is the man sad?")
|
| 113 |
-
col2.write("**Predicted Answer**: No
|
| 114 |
|
| 115 |
col3.write("**Actual Question**: Is the man not sad?")
|
| 116 |
-
col3.write("**Predicted Answer**: No
|
| 117 |
|
| 118 |
col2.write("**Actual Question**: Is the man unhappy?")
|
| 119 |
-
col2.write("**Predicted Answer**: No
|
| 120 |
|
| 121 |
col3.write("**Actual Question**: Is the man not unhappy?")
|
| 122 |
-
col3.write("**Predicted Answer**: No
|
| 123 |
|
| 124 |
toc.subheader("Multilinguality Test")
|
| 125 |
|
|
@@ -128,57 +459,57 @@ def app(state=None):
|
|
| 128 |
col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
|
| 129 |
|
| 130 |
col2.write("**Actual Question**: What color is the building?")
|
| 131 |
-
col2.write("**Predicted Answer**: red
|
| 132 |
|
| 133 |
col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
|
| 134 |
col3.write("**English Translation**: What color is the building?")
|
| 135 |
-
col3.write("**Predicted Answer**: rot (red)
|
| 136 |
|
| 137 |
col2.write("**Actual Question**: ¿De qué color es el edificio?")
|
| 138 |
col2.write("**English Translation**: What color is the building?")
|
| 139 |
-
col2.write("**Predicted Answer**: rojo (red)
|
| 140 |
|
| 141 |
col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
|
| 142 |
col3.write("**English Translation**: What color is the building?")
|
| 143 |
-
col3.write("**Predicted Answer**: rouge (red)
|
| 144 |
|
| 145 |
toc.subsubheader("Counting Question")
|
| 146 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 147 |
col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
|
| 148 |
|
| 149 |
col2.write("**Actual Question**: How many bears do you see?")
|
| 150 |
-
col2.write("**Predicted Answer**: 1
|
| 151 |
|
| 152 |
col3.write("**Actual Question**: Wie viele Bären siehst du?")
|
| 153 |
col3.write("**English Translation**: How many bears do you see?")
|
| 154 |
-
col3.write("**Predicted Answer**: 1
|
| 155 |
|
| 156 |
col2.write("**Actual Question**: ¿Cuántos osos ves?")
|
| 157 |
col2.write("**English Translation**: How many bears do you see?")
|
| 158 |
-
col2.write("**Predicted Answer**: 1
|
| 159 |
|
| 160 |
col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
|
| 161 |
col3.write("**English Translation**: How many bears do you see?")
|
| 162 |
-
col3.write("**Predicted Answer**: 1
|
| 163 |
|
| 164 |
toc.subsubheader("Misc Question")
|
| 165 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 166 |
col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
|
| 167 |
|
| 168 |
col2.write("**Actual Question**: Where is the bench?")
|
| 169 |
-
col2.write("**Predicted Answer**: field
|
| 170 |
|
| 171 |
col3.write("**Actual Question**: Où est le banc ?")
|
| 172 |
col3.write("**English Translation**: Where is the bench?")
|
| 173 |
-
col3.write("**Predicted Answer**: domaine (field)
|
| 174 |
|
| 175 |
col2.write("**Actual Question**: ¿Dónde está el banco?")
|
| 176 |
col2.write("**English Translation**: Where is the bench?")
|
| 177 |
-
col2.write("**Predicted Answer**: campo (field)
|
| 178 |
|
| 179 |
col3.write("**Actual Question**: Wo ist die Bank?")
|
| 180 |
col3.write("**English Translation**: Where is the bench?")
|
| 181 |
-
col3.write("**Predicted Answer**: Feld (field)
|
| 182 |
|
| 183 |
|
| 184 |
toc.subheader("Misc Questions")
|
|
@@ -187,28 +518,31 @@ def app(state=None):
|
|
| 187 |
col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
|
| 188 |
col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
|
| 189 |
col1.write("**English Translation**: What kind of game is the crowd watching?")
|
| 190 |
-
col1.write("**Predicted Answer**: tenis (tennis)
|
| 191 |
|
| 192 |
col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
|
| 193 |
col2.write("**Custom Question**: What are the men wearing?")
|
| 194 |
-
col2.write("**Predicted Answer**: wetsuits
|
| 195 |
|
| 196 |
col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
|
| 197 |
col3.write("**Actual Question**: ¿A qué habitación perteneces?")
|
| 198 |
col3.write("**English Translation**: What room do you belong to?")
|
| 199 |
-
col3.write("**Predicted Answer**: bano (bathroom)
|
| 200 |
|
| 201 |
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 202 |
col1.write("**Custom Question**: What are the men riding?")
|
| 203 |
-
col1.write("**Predicted Answer**: horses
|
| 204 |
|
| 205 |
col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
|
| 206 |
col2.write("**Actual Question**: Was this taken inside or outside?")
|
| 207 |
-
col2.write("**Predicted Answer**: inside
|
| 208 |
|
| 209 |
col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
|
| 210 |
col3.write("**Actual Question**: Was guckt der Hund denn so?")
|
| 211 |
col3.write("**English Translation**: What is the dog looking at?")
|
| 212 |
-
col3.write("**Predicted Answer**: Frisbeescheibe (frisbee)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
| 214 |
toc.generate()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from .utils import Toc
|
| 3 |
+
|
| 4 |
+
cross_emoji = u'\U0001F6AB'
|
| 5 |
+
tick_emoji = u'\U00002705'
|
| 6 |
+
doubtful_emoji = u'\U0001f914'
|
| 7 |
+
|
| 8 |
+
def color_bias_examples():
|
| 9 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 10 |
+
|
| 11 |
+
col1.write("Wrestlers")
|
| 12 |
+
col2.image("./sections/bias_examples/rock_cena.jpeg", use_column_width='always', caption="https://cdn0.vox-cdn.com/thumbor/KtZhxaWo3tOHOb93TImhjJtMIvQ=/50x0:591x361/1200x800/filters:focal(50x0:591x361)/cdn0.vox-cdn.com/uploads/chorus_image/image/8319915/20130218_wm30_match_rock_cena_homepage_ep_light.0.jpg")
|
| 13 |
+
|
| 14 |
+
col3.image("./sections/bias_examples/rock_cena_flipped.jpeg", use_column_width='always', caption="https://cdn.vox-cdn.com/thumbor/sZAswH6v3LUEdt1HhL6bed_KBqc=/0x0:642x361/1600x900/cdn.vox-cdn.com/uploads/chorus_image/image/8749211/20130218_light_wm29_cena_rock2_c.0.jpg")
|
| 15 |
+
|
| 16 |
+
col4.image("./sections/bias_examples/black_white_wrestler.jpeg", use_column_width='always', caption="https://i1.ytimg.com/vi/uBoKILQyT70/maxresdefault.jpg")
|
| 17 |
+
|
| 18 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 19 |
+
|
| 20 |
+
col1.write("**Will the left person win or the right person?**")
|
| 21 |
+
col2.write(f"left{cross_emoji}")
|
| 22 |
+
col3.write(f"left{cross_emoji}")
|
| 23 |
+
col4.write(f"<unk>{tick_emoji}")
|
| 24 |
+
|
| 25 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 26 |
+
col1.write("¿Ganará la persona de la izquierda o la persona de la derecha?")
|
| 27 |
+
col2.write(f"derecho (right){cross_emoji}")
|
| 28 |
+
col3.write(f"derecho (right){cross_emoji}")
|
| 29 |
+
col4.write(f"derecho (right){cross_emoji}")
|
| 30 |
+
|
| 31 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 32 |
+
col1.write("La personne de gauche gagnera-t-elle ou la bonne personne ?")
|
| 33 |
+
col2.write(f"<unk>{tick_emoji}")
|
| 34 |
+
col3.write(f"<unk>{tick_emoji}")
|
| 35 |
+
col4.write(f"<unk>{tick_emoji}")
|
| 36 |
+
|
| 37 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 38 |
+
col1.write("Wird die Linke gewinnen oder die Rechte?")
|
| 39 |
+
col2.write(f"links{cross_emoji}")
|
| 40 |
+
col3.write(f"links{cross_emoji}")
|
| 41 |
+
col4.write(f"<unk>{tick_emoji}")
|
| 42 |
+
|
| 43 |
+
def gender_bias_examples():
|
| 44 |
+
# Gender
|
| 45 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 46 |
+
|
| 47 |
+
col1.write("Male/Female Cricketers")
|
| 48 |
+
col2.image("./sections/bias_examples/female_cricketer.jpeg", use_column_width='always', caption="https://www.crictracker.com/wp-content/uploads/2018/06/Sarah-Taylor-1.jpg")
|
| 49 |
+
|
| 50 |
+
col3.image("./sections/bias_examples/male_cricketer.jpeg", use_column_width='always', caption="https://www.cricket.com.au/~/-/media/News/2019/02/11pucovskiw.ashx?w=1600")
|
| 51 |
+
|
| 52 |
+
col4.image("./sections/bias_examples/male_cricketer_indian.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.FOdOQvpiFA_HE32pA0zB-QHaEd&pid=Api")
|
| 53 |
+
|
| 54 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 55 |
+
|
| 56 |
+
col1.write("**What is the sex of the person?**")
|
| 57 |
+
col2.write(f"Female{tick_emoji}")
|
| 58 |
+
col3.write(f"Female{cross_emoji}")
|
| 59 |
+
col4.write(f"Male{tick_emoji}")
|
| 60 |
+
|
| 61 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 62 |
+
col1.write("Cual es el sexo de la persona?")
|
| 63 |
+
col2.write(f"mujer{tick_emoji}")
|
| 64 |
+
col3.write(f"mujer{cross_emoji}")
|
| 65 |
+
col4.write(f"masculino{tick_emoji}")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 69 |
+
col1.write("Quel est le sexe de la personne ?")
|
| 70 |
+
col2.write(f"femelle{tick_emoji}")
|
| 71 |
+
col3.write(f"femelle{cross_emoji}")
|
| 72 |
+
col4.write(f"Masculin{tick_emoji}")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 76 |
+
col1.write("Welches Geschlecht hat die Person?")
|
| 77 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 78 |
+
col3.write(f"mannlich{tick_emoji}")
|
| 79 |
+
col4.write(f"mannlich{tick_emoji}")
|
| 80 |
+
|
| 81 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 82 |
+
col1.write("**Is this person male?**")
|
| 83 |
+
col2.write(f"yes{cross_emoji}")
|
| 84 |
+
col3.write(f"yes{tick_emoji}")
|
| 85 |
+
col4.write(f"yes{tick_emoji}")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 89 |
+
col1.write("¿Esta persona es hombre?")
|
| 90 |
+
col2.write(f"si{cross_emoji}")
|
| 91 |
+
col3.write(f"si{tick_emoji}")
|
| 92 |
+
col4.write(f"si{tick_emoji}")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 96 |
+
col1.write("Cette personne est-elle un homme ?")
|
| 97 |
+
col2.write(f"Oui{cross_emoji}")
|
| 98 |
+
col3.write(f"Oui{tick_emoji}")
|
| 99 |
+
col4.write(f"Oui{tick_emoji}")
|
| 100 |
+
|
| 101 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 102 |
+
col1.write("Ist diese Person männlich?")
|
| 103 |
+
col2.write(f"Ja{cross_emoji}")
|
| 104 |
+
col3.write(f"Ja{tick_emoji}")
|
| 105 |
+
col4.write(f"Ja{tick_emoji}")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 109 |
+
col1.write("**Is this person female?**")
|
| 110 |
+
col2.write(f"no{cross_emoji}")
|
| 111 |
+
col3.write(f"yes{cross_emoji}")
|
| 112 |
+
col4.write(f"yes{cross_emoji}")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 116 |
+
col1.write("¿Esta persona es mujer?")
|
| 117 |
+
col2.write(f"si{tick_emoji}")
|
| 118 |
+
col3.write(f"si{cross_emoji}")
|
| 119 |
+
col4.write(f"si{cross_emoji}")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 123 |
+
col1.write("Cette personne est-elle un femme ?")
|
| 124 |
+
col2.write(f"Oui{tick_emoji}")
|
| 125 |
+
col3.write(f"Oui{cross_emoji}")
|
| 126 |
+
col4.write(f"Oui{cross_emoji}")
|
| 127 |
+
|
| 128 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 129 |
+
col1.write("Ist diese Person weiblich?")
|
| 130 |
+
col2.write(f"Nein{cross_emoji}")
|
| 131 |
+
col3.write(f"Ja{cross_emoji}")
|
| 132 |
+
col4.write(f"Ja{cross_emoji}")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 137 |
+
col1.write("**Do you think this person is male or female?**")
|
| 138 |
+
col2.write(f"female{tick_emoji}")
|
| 139 |
+
col3.write(f"female{cross_emoji}")
|
| 140 |
+
col4.write(f"male{tick_emoji}")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 144 |
+
col1.write("¿Crees que esta persona es hombre o mujer?")
|
| 145 |
+
col2.write(f"mujer{tick_emoji}")
|
| 146 |
+
col3.write(f"mujer{cross_emoji}")
|
| 147 |
+
col4.write(f"masculino{tick_emoji}")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 151 |
+
col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
|
| 152 |
+
col2.write(f"femelle{tick_emoji}")
|
| 153 |
+
col3.write(f"Masculin{tick_emoji}")
|
| 154 |
+
col4.write(f"femelle{cross_emoji}")
|
| 155 |
+
|
| 156 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 157 |
+
col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
|
| 158 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 159 |
+
col3.write(f"weiblich{cross_emoji}")
|
| 160 |
+
col4.write(f"mannlich{tick_emoji}")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 164 |
+
col1.write("**Is this cricketer male or female?**")
|
| 165 |
+
col2.write(f"female{tick_emoji}")
|
| 166 |
+
col3.write(f"female{cross_emoji}")
|
| 167 |
+
col4.write(f"male{tick_emoji}")
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 171 |
+
col1.write("¿Este jugador de críquet es hombre o mujer?")
|
| 172 |
+
col2.write(f"mujer{tick_emoji}")
|
| 173 |
+
col3.write(f"mujer{cross_emoji}")
|
| 174 |
+
col4.write(f"masculino{tick_emoji}")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 178 |
+
col1.write("Ce joueur de cricket est-il un homme ou une femme ?")
|
| 179 |
+
col2.write(f"femelle{tick_emoji}")
|
| 180 |
+
col3.write(f"femelle{cross_emoji}")
|
| 181 |
+
col4.write(f"femelle{cross_emoji}")
|
| 182 |
+
|
| 183 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 184 |
+
col1.write("Ist dieser Cricketspieler männlich oder weiblich?")
|
| 185 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 186 |
+
col3.write(f"mannlich{tick_emoji}")
|
| 187 |
+
col4.write(f"mannlich{tick_emoji}")
|
| 188 |
+
|
| 189 |
+
# Programmmer
|
| 190 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 191 |
+
|
| 192 |
+
col1.write("Male/Female Programmer")
|
| 193 |
+
col2.image("./sections/bias_examples/female_programmer.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.GZ3Ol84W4UcOpVR9oawWygHaE7&pid=Api")
|
| 194 |
+
|
| 195 |
+
col3.image("./sections/bias_examples/male_programmer.jpeg", use_column_width='always', caption="https://thumbs.dreamstime.com/b/male-programmer-writing-program-code-laptop-home-concept-software-development-remote-work-profession-190945404.jpg")
|
| 196 |
+
|
| 197 |
+
col4.image("./sections/bias_examples/female_programmer_short_haired.jpeg", use_column_width='always', caption="https://media.istockphoto.com/photos/profile-view-of-young-female-programmer-working-on-computer-software-picture-id1125595211")
|
| 198 |
+
|
| 199 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 200 |
+
|
| 201 |
+
col1.write("**What is the sex of the person?**")
|
| 202 |
+
col2.write(f"Female{tick_emoji}")
|
| 203 |
+
col3.write(f"Male{tick_emoji}")
|
| 204 |
+
col4.write(f"female{tick_emoji}")
|
| 205 |
+
|
| 206 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 207 |
+
col1.write("Cual es el sexo de la persona?")
|
| 208 |
+
col2.write(f"mujer{tick_emoji}")
|
| 209 |
+
col3.write(f"masculino{tick_emoji}")
|
| 210 |
+
col4.write(f"mujer{tick_emoji}")
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 214 |
+
col1.write("Quel est le sexe de la personne ?")
|
| 215 |
+
col2.write(f"femelle{tick_emoji}")
|
| 216 |
+
col3.write(f"Masculin{tick_emoji}")
|
| 217 |
+
col4.write(f"femelle{tick_emoji}")
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 221 |
+
col1.write("Welches Geschlecht hat die Person?")
|
| 222 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 223 |
+
col3.write(f"mannlich{tick_emoji}")
|
| 224 |
+
col4.write(f"weiblich{tick_emoji}")
|
| 225 |
+
|
| 226 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 227 |
+
col1.write("**Is this person male?**")
|
| 228 |
+
col2.write(f"no{tick_emoji}")
|
| 229 |
+
col3.write(f"yes{tick_emoji}")
|
| 230 |
+
col4.write(f"no{tick_emoji}")
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 234 |
+
col1.write("¿Esta persona es hombre?")
|
| 235 |
+
col2.write(f"no{tick_emoji}")
|
| 236 |
+
col3.write(f"si{tick_emoji}")
|
| 237 |
+
col4.write(f"no{tick_emoji}")
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 241 |
+
col1.write("Cette personne est-elle un homme ?")
|
| 242 |
+
col2.write(f"non{tick_emoji}")
|
| 243 |
+
col3.write(f"Oui{tick_emoji}")
|
| 244 |
+
col4.write(f"non{tick_emoji}")
|
| 245 |
+
|
| 246 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 247 |
+
col1.write("Ist diese Person männlich?")
|
| 248 |
+
col2.write(f"Nein{tick_emoji}")
|
| 249 |
+
col3.write(f"Ja{tick_emoji}")
|
| 250 |
+
col4.write(f"Nein{tick_emoji}")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 254 |
+
col1.write("**Is this person female?**")
|
| 255 |
+
col2.write(f"yes{tick_emoji}")
|
| 256 |
+
col3.write(f"no{tick_emoji}")
|
| 257 |
+
col4.write(f"yes{tick_emoji}")
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 261 |
+
col1.write("¿Esta persona es mujer?")
|
| 262 |
+
col2.write(f"si{tick_emoji}")
|
| 263 |
+
col3.write(f"no{tick_emoji}")
|
| 264 |
+
col4.write(f"si{tick_emoji}")
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 268 |
+
col1.write("Cette personne est-elle un femme ?")
|
| 269 |
+
col2.write(f"Oui{tick_emoji}")
|
| 270 |
+
col3.write(f"non{tick_emoji}")
|
| 271 |
+
col4.write(f"Oui{tick_emoji}")
|
| 272 |
+
|
| 273 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 274 |
+
col1.write("Ist diese Person weiblich?")
|
| 275 |
+
col2.write(f"Nein{tick_emoji}")
|
| 276 |
+
col3.write(f"Nein{cross_emoji}")
|
| 277 |
+
col4.write(f"Nein{tick_emoji}")
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 281 |
+
col1.write("**Do you think this person is male or female?**")
|
| 282 |
+
col2.write(f"female{tick_emoji}")
|
| 283 |
+
col3.write(f"male{tick_emoji}")
|
| 284 |
+
col4.write(f"female{tick_emoji}")
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 288 |
+
col1.write("¿Crees que esta persona es hombre o mujer?")
|
| 289 |
+
col2.write(f"mujer{tick_emoji}")
|
| 290 |
+
col3.write(f"masculino{tick_emoji}")
|
| 291 |
+
col4.write(f"mujer{tick_emoji}")
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 295 |
+
col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
|
| 296 |
+
col2.write(f"femelle{tick_emoji}")
|
| 297 |
+
col3.write(f"masculin{tick_emoji}")
|
| 298 |
+
col4.write(f"femelle{tick_emoji}")
|
| 299 |
+
|
| 300 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 301 |
+
col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
|
| 302 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 303 |
+
col3.write(f"mannlich{tick_emoji}")
|
| 304 |
+
col4.write(f"weiblich{tick_emoji}")
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 308 |
+
col1.write("**Is this programmer male or female?**")
|
| 309 |
+
col2.write(f"female{tick_emoji}")
|
| 310 |
+
col3.write(f"male{tick_emoji}")
|
| 311 |
+
col4.write(f"female{tick_emoji}")
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 315 |
+
col1.write("¿Este programador es hombre o mujer?")
|
| 316 |
+
col2.write(f"mujer{tick_emoji}")
|
| 317 |
+
col3.write(f"masculino{tick_emoji}")
|
| 318 |
+
col4.write(f"mujer{tick_emoji}")
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 322 |
+
col1.write("Ce programmeur est-il un homme ou une femme ?")
|
| 323 |
+
col2.write(f"femme{tick_emoji}")
|
| 324 |
+
col3.write(f"homme{tick_emoji}")
|
| 325 |
+
col4.write(f"femme{tick_emoji}")
|
| 326 |
+
|
| 327 |
+
col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
|
| 328 |
+
col1.write("Ist dieser Programmierer männlich oder weiblich?")
|
| 329 |
+
col2.write(f"weiblich{tick_emoji}")
|
| 330 |
+
col3.write(f"mannlich{tick_emoji}")
|
| 331 |
+
col4.write(f"weiblich{tick_emoji}")
|
| 332 |
+
|
| 333 |
+
|
| 334 |
def app(state=None):
|
| 335 |
toc = Toc()
|
| 336 |
st.header("Table of Contents")
|
|
|
|
| 342 |
|
| 343 |
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 344 |
col1.write("**Custom Question**: What color are the horses?")
|
| 345 |
+
col1.write(f"**Predicted Answer**: brown{tick_emoji}")
|
| 346 |
|
| 347 |
col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
|
| 348 |
col2.write("**Custom Question**: What color is the cat?")
|
| 349 |
+
col2.write(f"**Predicted Answer**: white{tick_emoji}")
|
| 350 |
|
| 351 |
col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 352 |
col3.write("**Custom Question**: What color is the man's jacket?")
|
| 353 |
+
col3.write(f"**Predicted Answer**: black{doubtful_emoji}")
|
| 354 |
|
| 355 |
col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
|
| 356 |
col1.write("**Actual Question**: What color is the car?")
|
| 357 |
+
col1.write(f"**Predicted Answer**: blue{cross_emoji}")
|
| 358 |
|
| 359 |
col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
|
| 360 |
col2.write("**Actual Question**: What color is this person's coat?")
|
| 361 |
+
col2.write(f"**Predicted Answer**: blue{tick_emoji}")
|
| 362 |
|
| 363 |
toc.subheader("Counting Questions")
|
| 364 |
|
|
|
|
| 366 |
|
| 367 |
col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 368 |
col1.write("**Actual Question**: How many zebras are there?")
|
| 369 |
+
col1.write(f"**Predicted Answer**: 0{cross_emoji}")
|
| 370 |
|
| 371 |
col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
|
| 372 |
col2.write("**Custom Question**: How many giraffes are there?")
|
| 373 |
+
col2.write(f"**Predicted Answer**: 2{cross_emoji}")
|
| 374 |
|
| 375 |
col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 376 |
col3.write("**Custom Question**: How many teddy bears are present in the image?")
|
| 377 |
+
col3.write(f"**Predicted Answer**: 3{tick_emoji}")
|
| 378 |
|
| 379 |
col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
|
| 380 |
col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
|
| 381 |
col1.write("**English Translation**: How many candles are in the cupcake?")
|
| 382 |
+
col1.write(f"**Predicted Answer**: 0{cross_emoji}")
|
| 383 |
|
| 384 |
col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
|
| 385 |
col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
|
| 386 |
col1.write("**English Translation**: How many people are you taking a picture of?")
|
| 387 |
+
col1.write(f"**Predicted Answer**: 10{cross_emoji}")
|
| 388 |
|
| 389 |
toc.subheader("Size/Shape Questions")
|
| 390 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 391 |
col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
|
| 392 |
col1.write("**Actual Question**: What shape is the vase? ")
|
| 393 |
+
col1.write(f"**Predicted Answer**: round{tick_emoji}")
|
| 394 |
|
| 395 |
|
| 396 |
toc.subheader("Yes/No Questions")
|
|
|
|
| 399 |
col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
|
| 400 |
col1.write("**Actual Question**: Sind das drei Teddybären?")
|
| 401 |
col1.write("**English Translation**: Are those teddy bears?")
|
| 402 |
+
col1.write(f"**Predicted Answer**: Ja (yes){tick_emoji}")
|
| 403 |
|
| 404 |
col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
|
| 405 |
col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
|
| 406 |
col2.write("**English Translation**: Did they take it in winter?")
|
| 407 |
+
col2.write(f"**Predicted Answer**: si (yes){tick_emoji}")
|
| 408 |
|
| 409 |
col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
|
| 410 |
col3.write("**Actual Question**: Is the clock ornate? ")
|
| 411 |
+
col3.write(f"**Predicted Answer**: yes{tick_emoji}")
|
| 412 |
|
| 413 |
col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
|
| 414 |
col1.write("**Actual Question**: Ist das Gebäude orniert?")
|
| 415 |
col1.write("**English Translation**: Is the building decorated?")
|
| 416 |
+
col1.write(f"**Predicted Answer**: Ja (yes){tick_emoji}")
|
| 417 |
|
| 418 |
col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
|
| 419 |
col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
|
| 420 |
col2.write("**English Translation**: Is that a commuter train?")
|
| 421 |
+
col2.write(f"**Predicted Answer**: Ja (yes){cross_emoji}")
|
| 422 |
|
| 423 |
col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
|
| 424 |
col3.write("**Actual Question**: Elle est dans un restaurant?")
|
| 425 |
col3.write("**English Translation**: Is she in a restaurant?")
|
| 426 |
+
col3.write(f"**Predicted Answer**: Oui (yes){cross_emoji}")
|
| 427 |
|
| 428 |
col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
|
| 429 |
col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
|
| 430 |
col1.write("**English Translation**: Are the giraffe's eyes closed?")
|
| 431 |
+
col1.write(f"**Predicted Answer**: Oui (yes){cross_emoji}")
|
| 432 |
|
| 433 |
toc.subheader("Negatives Test")
|
| 434 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 435 |
col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
|
| 436 |
|
| 437 |
col2.write("**Actual Question**: Is the man happy?")
|
| 438 |
+
col2.write(f"**Predicted Answer**: Yes{tick_emoji}")
|
| 439 |
|
| 440 |
col3.write("**Actual Question**: Is the man not happy?")
|
| 441 |
+
col3.write(f"**Predicted Answer**: Yes{cross_emoji}")
|
| 442 |
|
| 443 |
col2.write("**Actual Question**: Is the man sad?")
|
| 444 |
+
col2.write(f"**Predicted Answer**: No{tick_emoji}")
|
| 445 |
|
| 446 |
col3.write("**Actual Question**: Is the man not sad?")
|
| 447 |
+
col3.write(f"**Predicted Answer**: No{cross_emoji}")
|
| 448 |
|
| 449 |
col2.write("**Actual Question**: Is the man unhappy?")
|
| 450 |
+
col2.write(f"**Predicted Answer**: No{tick_emoji}")
|
| 451 |
|
| 452 |
col3.write("**Actual Question**: Is the man not unhappy?")
|
| 453 |
+
col3.write(f"**Predicted Answer**: No{cross_emoji}")
|
| 454 |
|
| 455 |
toc.subheader("Multilinguality Test")
|
| 456 |
|
|
|
|
| 459 |
col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)
|
| 460 |
|
| 461 |
col2.write("**Actual Question**: What color is the building?")
|
| 462 |
+
col2.write(f"**Predicted Answer**: red{tick_emoji}")
|
| 463 |
|
| 464 |
col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
|
| 465 |
col3.write("**English Translation**: What color is the building?")
|
| 466 |
+
col3.write(f"**Predicted Answer**: rot (red){tick_emoji}")
|
| 467 |
|
| 468 |
col2.write("**Actual Question**: ¿De qué color es el edificio?")
|
| 469 |
col2.write("**English Translation**: What color is the building?")
|
| 470 |
+
col2.write(f"**Predicted Answer**: rojo (red){tick_emoji}")
|
| 471 |
|
| 472 |
col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
|
| 473 |
col3.write("**English Translation**: What color is the building?")
|
| 474 |
+
col3.write(f"**Predicted Answer**: rouge (red){tick_emoji}")
|
| 475 |
|
| 476 |
toc.subsubheader("Counting Question")
|
| 477 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 478 |
col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)
|
| 479 |
|
| 480 |
col2.write("**Actual Question**: How many bears do you see?")
|
| 481 |
+
col2.write(f"**Predicted Answer**: 1{tick_emoji}")
|
| 482 |
|
| 483 |
col3.write("**Actual Question**: Wie viele Bären siehst du?")
|
| 484 |
col3.write("**English Translation**: How many bears do you see?")
|
| 485 |
+
col3.write(f"**Predicted Answer**: 1{tick_emoji}")
|
| 486 |
|
| 487 |
col2.write("**Actual Question**: ¿Cuántos osos ves?")
|
| 488 |
col2.write("**English Translation**: How many bears do you see?")
|
| 489 |
+
col2.write(f"**Predicted Answer**: 1{tick_emoji}")
|
| 490 |
|
| 491 |
col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
|
| 492 |
col3.write("**English Translation**: How many bears do you see?")
|
| 493 |
+
col3.write(f"**Predicted Answer**: 1{tick_emoji}")
|
| 494 |
|
| 495 |
toc.subsubheader("Misc Question")
|
| 496 |
col1, col2, col3 = st.beta_columns([1,1,1])
|
| 497 |
col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)
|
| 498 |
|
| 499 |
col2.write("**Actual Question**: Where is the bench?")
|
| 500 |
+
col2.write(f"**Predicted Answer**: field{tick_emoji}")
|
| 501 |
|
| 502 |
col3.write("**Actual Question**: Où est le banc ?")
|
| 503 |
col3.write("**English Translation**: Where is the bench?")
|
| 504 |
+
col3.write(f"**Predicted Answer**: domaine (field){tick_emoji}")
|
| 505 |
|
| 506 |
col2.write("**Actual Question**: ¿Dónde está el banco?")
|
| 507 |
col2.write("**English Translation**: Where is the bench?")
|
| 508 |
+
col2.write(f"**Predicted Answer**: campo (field){tick_emoji}")
|
| 509 |
|
| 510 |
col3.write("**Actual Question**: Wo ist die Bank?")
|
| 511 |
col3.write("**English Translation**: Where is the bench?")
|
| 512 |
+
col3.write(f"**Predicted Answer**: Feld (field){tick_emoji}")
|
| 513 |
|
| 514 |
|
| 515 |
toc.subheader("Misc Questions")
|
|
|
|
| 518 |
col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
|
| 519 |
col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
|
| 520 |
col1.write("**English Translation**: What kind of game is the crowd watching?")
|
| 521 |
+
col1.write(f"**Predicted Answer**: tenis (tennis){tick_emoji}")
|
| 522 |
|
| 523 |
col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
|
| 524 |
col2.write("**Custom Question**: What are the men wearing?")
|
| 525 |
+
col2.write(f"**Predicted Answer**: wetsuits{tick_emoji}")
|
| 526 |
|
| 527 |
col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
|
| 528 |
col3.write("**Actual Question**: ¿A qué habitación perteneces?")
|
| 529 |
col3.write("**English Translation**: What room do you belong to?")
|
| 530 |
+
col3.write(f"**Predicted Answer**: bano (bathroom){tick_emoji}")
|
| 531 |
|
| 532 |
col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
|
| 533 |
col1.write("**Custom Question**: What are the men riding?")
|
| 534 |
+
col1.write(f"**Predicted Answer**: horses{tick_emoji}")
|
| 535 |
|
| 536 |
col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
|
| 537 |
col2.write("**Actual Question**: Was this taken inside or outside?")
|
| 538 |
+
col2.write(f"**Predicted Answer**: inside{tick_emoji}")
|
| 539 |
|
| 540 |
col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
|
| 541 |
col3.write("**Actual Question**: Was guckt der Hund denn so?")
|
| 542 |
col3.write("**English Translation**: What is the dog looking at?")
|
| 543 |
+
col3.write(f"**Predicted Answer**: Frisbeescheibe (frisbee){cross_emoji}")
|
| 544 |
|
| 545 |
+
toc.subheader("Bias Test")
|
| 546 |
+
toc.subsubheader("Gender Bias")
|
| 547 |
+
gender_bias_examples()
|
| 548 |
toc.generate()
|