Spaces:
Runtime error
Runtime error
Abinaya Mahendiran
commited on
Commit
·
e4461ed
1
Parent(s):
fb12737
Updated app
Browse files
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Tamil
|
| 3 |
emoji: 💻
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
|
|
|
| 1 |
---
|
| 2 |
title: Tamil
|
| 3 |
emoji: 💻
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: greeen
|
| 6 |
sdk: streamlit
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
app.py
CHANGED
|
@@ -14,6 +14,7 @@ with open("config.json") as f:
|
|
| 14 |
# Set page layout
|
| 15 |
st.set_page_config(
|
| 16 |
page_title="Tamil Language Models",
|
|
|
|
| 17 |
layout="wide",
|
| 18 |
initial_sidebar_state="expanded"
|
| 19 |
)
|
|
@@ -24,59 +25,73 @@ def load_model(model_name):
|
|
| 24 |
with st.spinner('Waiting for the model to load.....'):
|
| 25 |
model = AutoModelWithLMHead.from_pretrained(model_name)
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
-
st.success('Model loaded!!')
|
| 28 |
return model, tokenizer
|
| 29 |
|
| 30 |
# Side bar
|
| 31 |
img = st.sidebar.image("images/tamil_logo.jpg", width=300)
|
| 32 |
|
| 33 |
# Choose the model based on selection
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Main page
|
| 38 |
st.title("Tamil Language Demos")
|
| 39 |
st.markdown(
|
| 40 |
-
"
|
| 41 |
-
"and [GPT2 trained on Oscar &
|
| 42 |
"to show language generation!"
|
| 43 |
)
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
if page == 'Text Generation' and data == 'Oscar':
|
| 46 |
st.header('Tamil text generation with GPT2')
|
| 47 |
-
st.markdown('A simple demo using gpt-2-tamil model trained on Oscar
|
| 48 |
model, tokenizer = load_model(config[data])
|
| 49 |
# Set default options
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
gen_bt = st.button('Generate')
|
| 54 |
-
if gen_bt:
|
| 55 |
-
try:
|
| 56 |
-
with st.spinner('Generating...'):
|
| 57 |
-
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 58 |
-
seqs = generator(seed, max_length=max_len)[0]['generated_text']# num_return_sequences=seq_num)
|
| 59 |
-
st.write(seqs)
|
| 60 |
-
except Exception as e:
|
| 61 |
-
st.exception(f'Exception: {e}')
|
| 62 |
elif page == 'Text Generation' and data == "Oscar + Indic Corpus":
|
| 63 |
st.header('Tamil text generation with GPT2')
|
| 64 |
-
st.markdown('A simple demo using gpt-2-tamil model trained on Oscar
|
| 65 |
model, tokenizer = load_model(config[data])
|
| 66 |
# Set default options
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
gen_bt = st.button('Generate')
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
with st.spinner('Generating...'):
|
| 74 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 75 |
-
seqs = generator(
|
| 76 |
st.write(seqs)
|
| 77 |
except Exception as e:
|
| 78 |
-
st.exception(f'Exception: {e}')
|
| 79 |
-
else:
|
| 80 |
-
st.title('Tamil News classification with Finetuned GPT2')
|
| 81 |
-
st.markdown('In progress')
|
| 82 |
-
|
|
|
|
| 14 |
# Set page layout
|
| 15 |
st.set_page_config(
|
| 16 |
page_title="Tamil Language Models",
|
| 17 |
+
page_icon="✍️",
|
| 18 |
layout="wide",
|
| 19 |
initial_sidebar_state="expanded"
|
| 20 |
)
|
|
|
|
| 25 |
with st.spinner('Waiting for the model to load.....'):
|
| 26 |
model = AutoModelWithLMHead.from_pretrained(model_name)
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 28 |
return model, tokenizer
|
| 29 |
|
| 30 |
# Side bar
|
| 31 |
img = st.sidebar.image("images/tamil_logo.jpg", width=300)
|
| 32 |
|
| 33 |
# Choose the model based on selection
|
| 34 |
+
st.sidebar.title("கதை சொல்லி!")
|
| 35 |
+
page = st.sidebar.selectbox(label="Select model",
|
| 36 |
+
options=config["models"],
|
| 37 |
+
help="Select the model to generate the text")
|
| 38 |
+
data = st.sidebar.selectbox(label="Select data",
|
| 39 |
+
options=config[page],
|
| 40 |
+
help="Select the data on which the model is trained")
|
| 41 |
|
| 42 |
# Main page
|
| 43 |
st.title("Tamil Language Demos")
|
| 44 |
st.markdown(
|
| 45 |
+
"Built as part of the Flax/Jax Community week, this demo uses [GPT2 trained on Oscar dataset](https://huggingface.co/flax-community/gpt-2-tamil) "
|
| 46 |
+
"and [GPT2 trained on Oscar & IndicNLP dataset] (https://huggingface.co/abinayam/gpt-2-tamil) "
|
| 47 |
"to show language generation!"
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# Set default options for examples
|
| 51 |
+
prompts = config["examples"] + ["Custom"]
|
| 52 |
+
|
| 53 |
if page == 'Text Generation' and data == 'Oscar':
|
| 54 |
st.header('Tamil text generation with GPT2')
|
| 55 |
+
st.markdown('A simple demo using gpt-2-tamil model trained on Oscar dataset!')
|
| 56 |
model, tokenizer = load_model(config[data])
|
| 57 |
# Set default options
|
| 58 |
+
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
|
| 59 |
+
if prompt == "Custom":
|
| 60 |
+
prompt_box = ""
|
| 61 |
+
else:
|
| 62 |
+
prompt_box = prompt
|
| 63 |
+
text = st.text_input(
|
| 64 |
+
'Add your custom text in Tamil',
|
| 65 |
+
"",
|
| 66 |
+
max_chars=1000)
|
| 67 |
+
max_len = st.slider('Length of the sentence to generate', 25, 300, 100)
|
| 68 |
gen_bt = st.button('Generate')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
elif page == 'Text Generation' and data == "Oscar + Indic Corpus":
|
| 70 |
st.header('Tamil text generation with GPT2')
|
| 71 |
+
st.markdown('A simple demo using gpt-2-tamil model trained on Oscar + IndicNLP dataset')
|
| 72 |
model, tokenizer = load_model(config[data])
|
| 73 |
# Set default options
|
| 74 |
+
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
|
| 75 |
+
if prompt == "Custom":
|
| 76 |
+
prompt_box = ""
|
| 77 |
+
else:
|
| 78 |
+
prompt_box = prompt
|
| 79 |
+
text = st.text_input(
|
| 80 |
+
'Add your custom text in Tamil',
|
| 81 |
+
"",
|
| 82 |
+
max_chars=1000)
|
| 83 |
+
max_len = st.slider('Length of the sentence', 5, 300, 100)
|
| 84 |
gen_bt = st.button('Generate')
|
| 85 |
+
else:
|
| 86 |
+
st.title('Tamil News classification with Finetuned GPT2')
|
| 87 |
+
st.markdown('In progress')
|
| 88 |
+
|
| 89 |
+
# Generate text
|
| 90 |
+
if gen_bt:
|
| 91 |
try:
|
| 92 |
with st.spinner('Generating...'):
|
| 93 |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 94 |
+
seqs = generator(prompt_box, max_length=max_len)[0]['generated_text']
|
| 95 |
st.write(seqs)
|
| 96 |
except Exception as e:
|
| 97 |
+
st.exception(f'Exception: {e}')
|
|
|
|
|
|
|
|
|
|
|
|