Spaces:
Runtime error
Runtime error
Galuh
commited on
Commit
·
c389ccc
1
Parent(s):
638e90b
Fix prompt reloading bug; add new finetuned model; replace api
Browse files
app.py
CHANGED
|
@@ -4,19 +4,32 @@ from mtranslate import translate
|
|
| 4 |
from prompts import PROMPT_LIST
|
| 5 |
import streamlit as st
|
| 6 |
import random
|
|
|
|
|
|
|
| 7 |
import fasttext
|
|
|
|
| 8 |
|
| 9 |
-
headers = {}
|
| 10 |
LOGO = "huggingwayang.png"
|
|
|
|
| 11 |
MODELS = {
|
| 12 |
-
"GPT-2 Small":
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
"GPT-2 Medium": {
|
| 16 |
-
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-medium-indonesian"
|
| 17 |
-
},
|
| 18 |
}
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_image(text: str):
|
| 22 |
url = "https://wikisearch.uncool.ai/get_image/"
|
|
@@ -33,45 +46,12 @@ def get_image(text: str):
|
|
| 33 |
image = ""
|
| 34 |
return image
|
| 35 |
|
| 36 |
-
def query(payload, model_name):
|
| 37 |
-
data = json.dumps(payload)
|
| 38 |
-
# print("model url:", MODELS[model_name]["url"])
|
| 39 |
-
response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
|
| 40 |
-
return json.loads(response.content.decode("utf-8"))
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def process(text: str,
|
| 44 |
-
model_name: str,
|
| 45 |
-
max_len: int,
|
| 46 |
-
temp: float,
|
| 47 |
-
top_k: int,
|
| 48 |
-
top_p: float):
|
| 49 |
-
|
| 50 |
-
payload = {
|
| 51 |
-
"inputs": text,
|
| 52 |
-
"parameters": {
|
| 53 |
-
"max_new_tokens": max_len,
|
| 54 |
-
"top_k": top_k,
|
| 55 |
-
"top_p": top_p,
|
| 56 |
-
"temperature": temp,
|
| 57 |
-
"repetition_penalty": 2.0,
|
| 58 |
-
},
|
| 59 |
-
"options": {
|
| 60 |
-
"use_cache": True,
|
| 61 |
-
}
|
| 62 |
-
}
|
| 63 |
-
return query(payload, model_name)
|
| 64 |
-
|
| 65 |
st.set_page_config(page_title="Indonesian GPT-2 Demo")
|
| 66 |
-
st.title("Indonesian GPT-2")
|
| 67 |
|
| 68 |
-
|
| 69 |
-
token = st.secrets["flax_community_token"]
|
| 70 |
-
headers = {"Authorization": f"Bearer {token}"}
|
| 71 |
-
except FileNotFoundError:
|
| 72 |
-
print(f"Token is not found")
|
| 73 |
|
| 74 |
ft_model = fasttext.load_model('lid.176.ftz')
|
|
|
|
| 75 |
# Sidebar
|
| 76 |
st.sidebar.image(LOGO)
|
| 77 |
st.sidebar.subheader("Configurable parameters")
|
|
@@ -85,25 +65,23 @@ max_len = st.sidebar.number_input(
|
|
| 85 |
temp = st.sidebar.slider(
|
| 86 |
"Temperature",
|
| 87 |
value=1.0,
|
| 88 |
-
min_value=0.
|
| 89 |
max_value=100.0,
|
| 90 |
help="The value used to module the next token probabilities."
|
| 91 |
)
|
| 92 |
|
| 93 |
top_k = st.sidebar.number_input(
|
| 94 |
"Top k",
|
| 95 |
-
value=
|
| 96 |
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
|
| 97 |
)
|
| 98 |
|
| 99 |
top_p = st.sidebar.number_input(
|
| 100 |
"Top p",
|
| 101 |
-
value=0
|
| 102 |
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
|
| 103 |
)
|
| 104 |
|
| 105 |
-
# do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")
|
| 106 |
-
|
| 107 |
st.markdown(
|
| 108 |
"""
|
| 109 |
This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and
|
|
@@ -111,68 +89,90 @@ st.markdown(
|
|
| 111 |
trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4)
|
| 112 |
and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the
|
| 113 |
[Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
|
| 114 |
-
|
| 115 |
The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with
|
| 116 |
the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence
|
| 117 |
in the encoded passages using Facebook's Faiss.
|
| 118 |
"""
|
| 119 |
)
|
| 120 |
|
| 121 |
-
model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium']))
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
else:
|
| 129 |
-
prompt_box
|
|
|
|
| 130 |
|
| 131 |
-
text = st.text_area("Enter text", prompt_box)
|
| 132 |
|
| 133 |
if st.button("Run"):
|
| 134 |
with st.spinner(text="Getting results..."):
|
| 135 |
-
lang_predictions, lang_probability = ft_model.predict(text.replace("\n", " "), k=3)
|
| 136 |
-
# print(f"lang: {lang_predictions}, {lang_probability}")
|
| 137 |
if "__label__id" in lang_predictions:
|
| 138 |
lang = "id"
|
|
|
|
| 139 |
else:
|
| 140 |
lang = lang_predictions[0].replace("__label__", "")
|
| 141 |
-
text = translate(text, "id", lang)
|
| 142 |
-
|
| 143 |
st.subheader("Result")
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
else:
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
image
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
| 4 |
from prompts import PROMPT_LIST
|
| 5 |
import streamlit as st
|
| 6 |
import random
|
| 7 |
+
import transformers
|
| 8 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 9 |
import fasttext
|
| 10 |
+
import SessionState
|
| 11 |
|
|
|
|
| 12 |
LOGO = "huggingwayang.png"
|
| 13 |
+
|
| 14 |
MODELS = {
|
| 15 |
+
"GPT-2 Small": "flax-community/gpt2-small-indonesian",
|
| 16 |
+
"GPT-2 Medium": "flax-community/gpt2-medium-indonesian",
|
| 17 |
+
"GPT-2 Small finetuned on Indonesian academic journals": "Galuh/id-journal-gpt2"
|
|
|
|
|
|
|
|
|
|
| 18 |
}
|
| 19 |
|
| 20 |
+
headers = {}
|
| 21 |
+
|
| 22 |
+
@st.cache(show_spinner=False)
|
| 23 |
+
def load_gpt(model_type):
|
| 24 |
+
model = GPT2LMHeadModel.from_pretrained(MODELS[model_type])
|
| 25 |
+
|
| 26 |
+
return model
|
| 27 |
+
|
| 28 |
+
@st.cache(show_spinner=False, hash_funcs={transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer: lambda _: None})
|
| 29 |
+
def load_gpt_tokenizer(model_type):
|
| 30 |
+
tokenizer = GPT2Tokenizer.from_pretrained(MODELS[model_type])
|
| 31 |
+
|
| 32 |
+
return tokenizer
|
| 33 |
|
| 34 |
def get_image(text: str):
|
| 35 |
url = "https://wikisearch.uncool.ai/get_image/"
|
|
|
|
| 46 |
image = ""
|
| 47 |
return image
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
st.set_page_config(page_title="Indonesian GPT-2 Demo")
|
|
|
|
| 50 |
|
| 51 |
+
st.title("Indonesian GPT-2")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
ft_model = fasttext.load_model('lid.176.ftz')
|
| 54 |
+
|
| 55 |
# Sidebar
|
| 56 |
st.sidebar.image(LOGO)
|
| 57 |
st.sidebar.subheader("Configurable parameters")
|
|
|
|
| 65 |
temp = st.sidebar.slider(
|
| 66 |
"Temperature",
|
| 67 |
value=1.0,
|
| 68 |
+
min_value=0.0,
|
| 69 |
max_value=100.0,
|
| 70 |
help="The value used to module the next token probabilities."
|
| 71 |
)
|
| 72 |
|
| 73 |
top_k = st.sidebar.number_input(
|
| 74 |
"Top k",
|
| 75 |
+
value=50,
|
| 76 |
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
|
| 77 |
)
|
| 78 |
|
| 79 |
top_p = st.sidebar.number_input(
|
| 80 |
"Top p",
|
| 81 |
+
value=1.0,
|
| 82 |
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
|
| 83 |
)
|
| 84 |
|
|
|
|
|
|
|
| 85 |
st.markdown(
|
| 86 |
"""
|
| 87 |
This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and
|
|
|
|
| 89 |
trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4)
|
| 90 |
and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the
|
| 91 |
[Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
|
| 92 |
+
|
| 93 |
The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with
|
| 94 |
the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence
|
| 95 |
in the encoded passages using Facebook's Faiss.
|
| 96 |
"""
|
| 97 |
)
|
| 98 |
|
| 99 |
+
model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium', 'GPT-2 Small finetuned on Indonesian academic journals']))
|
| 100 |
|
| 101 |
+
if model_name in ["GPT-2 Small", "GPT-2 Medium"]:
|
| 102 |
+
prompt_group_name = "GPT-2"
|
| 103 |
+
elif model_name in ["GPT-2 Small finetuned on Indonesian academic journals"]:
|
| 104 |
+
prompt_group_name = "Indonesian Journals"
|
| 105 |
|
| 106 |
+
session_state = SessionState.get(prompt=None, prompt_box=None, text=None)
|
| 107 |
+
|
| 108 |
+
ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys())+["Custom"]
|
| 109 |
+
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)
|
| 110 |
+
|
| 111 |
+
# Update prompt
|
| 112 |
+
if session_state.prompt is None:
|
| 113 |
+
session_state.prompt = prompt
|
| 114 |
+
elif session_state.prompt is not None and (prompt != session_state.prompt):
|
| 115 |
+
session_state.prompt = prompt
|
| 116 |
+
session_state.prompt_box = None
|
| 117 |
+
session_state.text = None
|
| 118 |
+
else:
|
| 119 |
+
session_state.prompt = prompt
|
| 120 |
+
|
| 121 |
+
# Update prompt box
|
| 122 |
+
if session_state.prompt == "Custom":
|
| 123 |
+
session_state.prompt_box = "Enter your text here"
|
| 124 |
else:
|
| 125 |
+
if session_state.prompt is not None and session_state.prompt_box is None:
|
| 126 |
+
session_state.prompt_box = random.choice(PROMPT_LIST[prompt_group_name][session_state.prompt])
|
| 127 |
|
| 128 |
+
session_state.text = st.text_area("Enter text", session_state.prompt_box)
|
| 129 |
|
| 130 |
if st.button("Run"):
|
| 131 |
with st.spinner(text="Getting results..."):
|
| 132 |
+
lang_predictions, lang_probability = ft_model.predict(session_state.text.replace("\n", " "), k=3)
|
|
|
|
| 133 |
if "__label__id" in lang_predictions:
|
| 134 |
lang = "id"
|
| 135 |
+
text = session_state.text
|
| 136 |
else:
|
| 137 |
lang = lang_predictions[0].replace("__label__", "")
|
| 138 |
+
text = translate(session_state.text, "id", lang)
|
| 139 |
+
|
| 140 |
st.subheader("Result")
|
| 141 |
+
model = load_gpt(model_name)
|
| 142 |
+
tokenizer = load_gpt_tokenizer(model_name)
|
| 143 |
+
|
| 144 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
| 145 |
+
output = model.generate(input_ids=input_ids,
|
| 146 |
+
max_length=max_len,
|
| 147 |
+
temperature=temp,
|
| 148 |
+
top_k=top_k,
|
| 149 |
+
top_p=top_p,
|
| 150 |
+
repetition_penalty=2.0)
|
| 151 |
+
|
| 152 |
+
text = tokenizer.decode(output[0],
|
| 153 |
+
skip_special_tokens=True)
|
| 154 |
+
st.write(text.replace("\n", " \n"))
|
| 155 |
+
|
| 156 |
+
st.text("Translation")
|
| 157 |
+
translation = translate(text, "en", "id")
|
| 158 |
+
|
| 159 |
+
if lang == "id":
|
| 160 |
+
st.write(translation.replace("\n", " \n"))
|
| 161 |
+
|
| 162 |
else:
|
| 163 |
+
st.write(translate(text, lang, "id").replace("\n", " \n"))
|
| 164 |
+
|
| 165 |
+
image_cat = "https://media.giphy.com/media/vFKqnCdLPNOKc/giphy.gif"
|
| 166 |
+
image = get_image(translation.replace("\"", "'"))
|
| 167 |
+
|
| 168 |
+
if image is not "":
|
| 169 |
+
st.image(image, width=400)
|
| 170 |
+
|
| 171 |
+
else:
|
| 172 |
+
# display cat image if no image found
|
| 173 |
+
st.image(image_cat, width=400)
|
| 174 |
+
|
| 175 |
+
# Reset state
|
| 176 |
+
session_state.prompt = None
|
| 177 |
+
session_state.prompt_box = None
|
| 178 |
+
session_state.text = None
|