Spaces:
Runtime error
Runtime error
| import os, sys, shutil | |
| import numpy as np | |
| from PIL import Image | |
| import jax | |
| from transformers import ViTFeatureExtractor | |
| from transformers import GPT2Tokenizer | |
| from huggingface_hub import hf_hub_download | |
| current_path = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(current_path) | |
| # Main model - ViTGPT2LM | |
| from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration | |
| # create target model directory | |
| model_dir = './models/' | |
| os.makedirs(model_dir, exist_ok=True) | |
| # copy config file | |
| filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/config.json") | |
| shutil.copyfile(filepath, os.path.join(model_dir, 'config.json')) | |
| # copy model file | |
| filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/flax_model.msgpack") | |
| shutil.copyfile(filepath, os.path.join(model_dir, 'flax_model.msgpack')) | |
| flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_dir) | |
| vit_model_name = 'google/vit-base-patch16-224-in21k' | |
| feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name) | |
| gpt2_model_name = 'asi/gpt-fr-cased-small' | |
| tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name) | |
| max_length = 32 | |
| num_beams = 8 | |
| gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
| def predict_fn(pixel_values): | |
| return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs) | |
| def predict(image): | |
| # batch dim is added automatically | |
| encoder_inputs = feature_extractor(images=image, return_tensors="jax") | |
| pixel_values = encoder_inputs.pixel_values | |
| # generation | |
| generation = predict_fn(pixel_values) | |
| token_ids = np.array(generation.sequences)[0] | |
| caption = tokenizer.decode(token_ids) | |
| return caption | |
| def compile(): | |
| image_path = 'samples/val_000000039769.jpg' | |
| image = Image.open(image_path) | |
| caption = predict(image) | |
| image.close() | |
| def predict_dummy(image): | |
| return 'dummy caption!' | |
| compile() | |
| sample_dir = './samples/' | |
| sample_fns = tuple([f"{int(f.replace('COCO_val2014_', '').replace('.jpg', ''))}.jpg" for f in os.listdir(sample_dir) if f.startswith('COCO_val2014_')]) | |