Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		ydshieh
		
	commited on
		
		
					Commit 
							
							·
						
						e755009
	
1
								Parent(s):
							
							686f21e
								
try load model from hub
Browse files- model.py +5 -3
- vit_gpt2/__init__.py +0 -0
- vit_gpt2/configuration_vit_gpt2.py +45 -0
- vit_gpt2/modeling_flax_gpt2.py +752 -0
- vit_gpt2/modeling_flax_vit_gpt2.py +704 -0
- vit_gpt2/modeling_flax_vit_gpt2_lm.py +684 -0
    	
        model.py
    CHANGED
    
    | @@ -9,11 +9,13 @@ from transformers import GPT2Tokenizer | |
| 9 | 
             
            current_path = os.path.dirname(os.path.abspath(__file__))
         | 
| 10 | 
             
            sys.path.append(current_path)
         | 
| 11 |  | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 |  | 
| 15 | 
            -
             | 
|  | |
| 16 |  | 
|  | |
| 17 | 
             
                return 'dummy caption!', ['dummy', 'caption', '!'], [1, 2, 3]
         | 
| 18 |  | 
| 19 |  | 
|  | |
| 9 | 
             
            current_path = os.path.dirname(os.path.abspath(__file__))
         | 
| 10 | 
             
            sys.path.append(current_path)
         | 
| 11 |  | 
| 12 | 
            +
            Main model -  ViTGPT2LM
         | 
| 13 | 
            +
            from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration
         | 
| 14 |  | 
| 15 | 
            +
            model_name_or_path = 'flax-community/vit-gpt2/checkpoints/ckpt_5/'
         | 
| 16 | 
            +
            flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_name_or_path)
         | 
| 17 |  | 
| 18 | 
            +
            def predict(image):
         | 
| 19 | 
             
                return 'dummy caption!', ['dummy', 'caption', '!'], [1, 2, 3]
         | 
| 20 |  | 
| 21 |  | 
    	
        vit_gpt2/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        vit_gpt2/configuration_vit_gpt2.py
    ADDED
    
    | @@ -0,0 +1,45 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import copy
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import GPT2Config, ViTConfig
         | 
| 4 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 5 | 
            +
            from transformers.utils import logging
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class ViTGPT2Config(PretrainedConfig):
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                model_type = "vit-gpt2"
         | 
| 13 | 
            +
                is_composition = True
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                def __init__(self, **kwargs):
         | 
| 16 | 
            +
                    super().__init__(**kwargs)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    if "vit_config" not in kwargs:
         | 
| 19 | 
            +
                        raise ValueError("`vit_config` can not be `None`.")
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                    if "gpt2_config" not in kwargs:
         | 
| 22 | 
            +
                        raise ValueError("`gpt2_config` can not be `None`.")
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                    vit_config = kwargs.pop("vit_config")
         | 
| 25 | 
            +
                    gpt2_config = kwargs.pop("gpt2_config")
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                    self.vit_config = ViTConfig(**vit_config)
         | 
| 28 | 
            +
                    self.gpt2_config = GPT2Config(**gpt2_config)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                @classmethod
         | 
| 31 | 
            +
                def from_vit_gpt2_configs(
         | 
| 32 | 
            +
                    cls, vit_config: PretrainedConfig, gpt2_config: PretrainedConfig, **kwargs
         | 
| 33 | 
            +
                ):
         | 
| 34 | 
            +
                    return cls(
         | 
| 35 | 
            +
                        vit_config=vit_config.to_dict(),
         | 
| 36 | 
            +
                        gpt2_config=gpt2_config.to_dict(),
         | 
| 37 | 
            +
                        **kwargs
         | 
| 38 | 
            +
                    )
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def to_dict(self):
         | 
| 41 | 
            +
                    output = copy.deepcopy(self.__dict__)
         | 
| 42 | 
            +
                    output["vit_config"] = self.vit_config.to_dict()
         | 
| 43 | 
            +
                    output["gpt2_config"] = self.gpt2_config.to_dict()
         | 
| 44 | 
            +
                    output["model_type"] = self.__class__.model_type
         | 
| 45 | 
            +
                    return output
         | 
    	
        vit_gpt2/modeling_flax_gpt2.py
    ADDED
    
    | @@ -0,0 +1,752 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from typing import Any, Optional, Tuple
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import flax.linen as nn
         | 
| 19 | 
            +
            import jax
         | 
| 20 | 
            +
            import jax.numpy as jnp
         | 
| 21 | 
            +
            from flax.core.frozen_dict import FrozenDict, unfreeze
         | 
| 22 | 
            +
            from flax.linen import combine_masks, make_causal_mask
         | 
| 23 | 
            +
            from flax.linen.attention import dot_product_attention_weights
         | 
| 24 | 
            +
            from jax import lax
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
         | 
| 27 | 
            +
            from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPast, FlaxCausalLMOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxSeq2SeqLMOutput
         | 
| 28 | 
            +
            from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
         | 
| 29 | 
            +
            from transformers.utils import logging
         | 
| 30 | 
            +
            from transformers.models.gpt2.configuration_gpt2 import GPT2Config
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            _CHECKPOINT_FOR_DOC = "gpt2"
         | 
| 36 | 
            +
            _CONFIG_FOR_DOC = "GPT2Config"
         | 
| 37 | 
            +
            _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            GPT2_START_DOCSTRING = r"""
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the
         | 
| 43 | 
            +
                generic methods the library implements for all its model (such as downloading or saving, resizing the input
         | 
| 44 | 
            +
                embeddings, pruning heads etc.)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                This model is also a Flax Linen `flax.nn.Module
         | 
| 47 | 
            +
                <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax
         | 
| 48 | 
            +
                Module and refer to the Flax documentation for all matter related to general usage and behavior.
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                Finally, this model supports inherent JAX features such as:
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__
         | 
| 53 | 
            +
                - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__
         | 
| 54 | 
            +
                - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__
         | 
| 55 | 
            +
                - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                Parameters:
         | 
| 58 | 
            +
                    config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
         | 
| 59 | 
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         | 
| 60 | 
            +
                        configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the
         | 
| 61 | 
            +
                        model weights.
         | 
| 62 | 
            +
            """
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            GPT2_INPUTS_DOCSTRING = r"""
         | 
| 65 | 
            +
                Args:
         | 
| 66 | 
            +
                    input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, input_ids_length)`):
         | 
| 67 | 
            +
                        :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary.
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                        Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
         | 
| 70 | 
            +
                        :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
         | 
| 71 | 
            +
                        details.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                        `What are input IDs? <../glossary.html#input-ids>`__
         | 
| 74 | 
            +
                    attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         | 
| 75 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 78 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        `What are attention masks? <../glossary.html#attention-mask>`__
         | 
| 81 | 
            +
                    position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         | 
| 82 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
         | 
| 83 | 
            +
                        config.max_position_embeddings - 1]``.
         | 
| 84 | 
            +
                    past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``):
         | 
| 85 | 
            +
                        Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
         | 
| 86 | 
            +
                        auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`.
         | 
| 87 | 
            +
                    output_attentions (:obj:`bool`, `optional`):
         | 
| 88 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
         | 
| 89 | 
            +
                        tensors for more detail.
         | 
| 90 | 
            +
                    output_hidden_states (:obj:`bool`, `optional`):
         | 
| 91 | 
            +
                        Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
         | 
| 92 | 
            +
                        more detail.
         | 
| 93 | 
            +
                    return_dict (:obj:`bool`, `optional`):
         | 
| 94 | 
            +
                        Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
         | 
| 95 | 
            +
            """
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            class FlaxConv1D(nn.Module):
         | 
| 99 | 
            +
                features: int
         | 
| 100 | 
            +
                use_bias: bool = True
         | 
| 101 | 
            +
                dtype: Any = jnp.float32
         | 
| 102 | 
            +
                precision: Any = None
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                @nn.compact
         | 
| 105 | 
            +
                def __call__(self, inputs):
         | 
| 106 | 
            +
                    inputs = jnp.asarray(inputs, self.dtype)
         | 
| 107 | 
            +
                    kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1]))
         | 
| 108 | 
            +
                    kernel = jnp.asarray(kernel.transpose(), self.dtype)
         | 
| 109 | 
            +
                    y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision)
         | 
| 110 | 
            +
                    if self.use_bias:
         | 
| 111 | 
            +
                        bias = self.param("bias", jax.nn.initializers.zeros, (self.features,))
         | 
| 112 | 
            +
                        bias = jnp.asarray(bias, self.dtype)
         | 
| 113 | 
            +
                        y = y + bias
         | 
| 114 | 
            +
                    return y
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            class FlaxGPT2Attention(nn.Module):
         | 
| 118 | 
            +
                config: GPT2Config
         | 
| 119 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 120 | 
            +
                causal: bool = True
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                def setup(self):
         | 
| 123 | 
            +
                    config = self.config
         | 
| 124 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 125 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 126 | 
            +
                    self.head_dim = self.embed_dim // self.num_heads
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    self.c_attn = FlaxConv1D(features=3 * self.embed_dim, dtype=self.dtype)
         | 
| 129 | 
            +
                    self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    self.c_attn_for_k_v = FlaxConv1D(features=2 * self.embed_dim, dtype=self.dtype)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    if self.causal:
         | 
| 136 | 
            +
                        self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                def _split_heads(self, hidden_states):
         | 
| 139 | 
            +
                    return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                def _merge_heads(self, hidden_states):
         | 
| 142 | 
            +
                    return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                @nn.compact
         | 
| 145 | 
            +
                def _concatenate_to_cache(self, key, value, query, attention_mask):
         | 
| 146 | 
            +
                    """
         | 
| 147 | 
            +
                    This function takes projected key, value states from a single input token and concatenates the states to cached
         | 
| 148 | 
            +
                    states from previous steps. This function is slighly adapted from the official Flax repository:
         | 
| 149 | 
            +
                    https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
         | 
| 150 | 
            +
                    """
         | 
| 151 | 
            +
                    # detect if we're initializing by absence of existing cache data.
         | 
| 152 | 
            +
                    is_initialized = self.has_variable("cache", "cached_key")
         | 
| 153 | 
            +
                    cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
         | 
| 154 | 
            +
                    cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
         | 
| 155 | 
            +
                    cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    if is_initialized:
         | 
| 158 | 
            +
                        *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
         | 
| 159 | 
            +
                        # update key, value caches with our new 1d spatial slices
         | 
| 160 | 
            +
                        cur_index = cache_index.value
         | 
| 161 | 
            +
                        indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
         | 
| 162 | 
            +
                        key = lax.dynamic_update_slice(cached_key.value, key, indices)
         | 
| 163 | 
            +
                        value = lax.dynamic_update_slice(cached_value.value, value, indices)
         | 
| 164 | 
            +
                        cached_key.value = key
         | 
| 165 | 
            +
                        cached_value.value = value
         | 
| 166 | 
            +
                        num_updated_cache_vectors = query.shape[1]
         | 
| 167 | 
            +
                        cache_index.value = cache_index.value + num_updated_cache_vectors
         | 
| 168 | 
            +
                        # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
         | 
| 169 | 
            +
                        pad_mask = jnp.broadcast_to(
         | 
| 170 | 
            +
                            jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
         | 
| 171 | 
            +
                            tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
         | 
| 172 | 
            +
                        )
         | 
| 173 | 
            +
                        attention_mask = combine_masks(pad_mask, attention_mask)
         | 
| 174 | 
            +
                    return key, value, attention_mask
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def __call__(
         | 
| 177 | 
            +
                    self,
         | 
| 178 | 
            +
                    hidden_states,
         | 
| 179 | 
            +
                    key_value_states: Optional[jnp.ndarray] = None,
         | 
| 180 | 
            +
                    attention_mask=None,
         | 
| 181 | 
            +
                    deterministic: bool = True,
         | 
| 182 | 
            +
                    init_cache: bool = False,
         | 
| 183 | 
            +
                    output_attentions: bool = False,
         | 
| 184 | 
            +
                ):
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    # if key_value_states are provided this layer is used as a cross-attention layer
         | 
| 187 | 
            +
                    # for the decoder
         | 
| 188 | 
            +
                    is_cross_attention = key_value_states is not None
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    qkv_out = self.c_attn(hidden_states)
         | 
| 191 | 
            +
                    query, key, value = jnp.split(qkv_out, 3, axis=2)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    if is_cross_attention:
         | 
| 194 | 
            +
                        _qkv_out = self.c_attn_for_k_v(key_value_states)
         | 
| 195 | 
            +
                        key, value = jnp.split(_qkv_out, 2, axis=2)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    query = self._split_heads(query)
         | 
| 198 | 
            +
                    key = self._split_heads(key)
         | 
| 199 | 
            +
                    value = self._split_heads(value)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    query_length, key_length = query.shape[1], key.shape[1]
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    if self.causal:
         | 
| 204 | 
            +
                        if self.has_variable("cache", "cached_key"):
         | 
| 205 | 
            +
                            mask_shift = self.variables["cache"]["cache_index"]
         | 
| 206 | 
            +
                            max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
         | 
| 207 | 
            +
                            causal_mask = lax.dynamic_slice(
         | 
| 208 | 
            +
                                self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
         | 
| 209 | 
            +
                            )
         | 
| 210 | 
            +
                        else:
         | 
| 211 | 
            +
                            causal_mask = self.causal_mask[:, :, :query_length, :key_length]
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                        batch_size = hidden_states.shape[0]
         | 
| 214 | 
            +
                        causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    # combine masks if needed
         | 
| 217 | 
            +
                    if attention_mask is not None and self.causal:
         | 
| 218 | 
            +
                        attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
         | 
| 219 | 
            +
                        attention_mask = combine_masks(attention_mask, causal_mask)
         | 
| 220 | 
            +
                    elif self.causal:
         | 
| 221 | 
            +
                        attention_mask = causal_mask
         | 
| 222 | 
            +
                    elif attention_mask is not None:
         | 
| 223 | 
            +
                        attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    dropout_rng = None
         | 
| 226 | 
            +
                    if not deterministic and self.config.attn_pdrop > 0.0:
         | 
| 227 | 
            +
                        dropout_rng = self.make_rng("dropout")
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    # During fast autoregressive decoding, we feed one position at a time,
         | 
| 230 | 
            +
                    # and cache the keys and values step by step.
         | 
| 231 | 
            +
                    if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
         | 
| 232 | 
            +
                        key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    # transform boolean mask into float mask
         | 
| 235 | 
            +
                    if attention_mask is not None:
         | 
| 236 | 
            +
                        attention_bias = lax.select(
         | 
| 237 | 
            +
                            attention_mask > 0,
         | 
| 238 | 
            +
                            jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
         | 
| 239 | 
            +
                            jnp.full(attention_mask.shape, -1e4).astype(self.dtype),
         | 
| 240 | 
            +
                        )
         | 
| 241 | 
            +
                    else:
         | 
| 242 | 
            +
                        attention_bias = None
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    # usual dot product attention
         | 
| 245 | 
            +
                    attn_weights = dot_product_attention_weights(
         | 
| 246 | 
            +
                        query,
         | 
| 247 | 
            +
                        key,
         | 
| 248 | 
            +
                        bias=attention_bias,
         | 
| 249 | 
            +
                        dropout_rng=dropout_rng,
         | 
| 250 | 
            +
                        dropout_rate=self.config.attn_pdrop,
         | 
| 251 | 
            +
                        deterministic=deterministic,
         | 
| 252 | 
            +
                        dtype=self.dtype,
         | 
| 253 | 
            +
                        precision=None,
         | 
| 254 | 
            +
                    )
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
         | 
| 257 | 
            +
                    attn_output = self._merge_heads(attn_output)
         | 
| 258 | 
            +
                    attn_output = self.c_proj(attn_output)
         | 
| 259 | 
            +
                    attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
         | 
| 262 | 
            +
                    return outputs
         | 
| 263 | 
            +
             | 
| 264 | 
            +
             | 
| 265 | 
            +
            class FlaxGPT2MLP(nn.Module):
         | 
| 266 | 
            +
                config: GPT2Config
         | 
| 267 | 
            +
                intermediate_size: int
         | 
| 268 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def setup(self):
         | 
| 271 | 
            +
                    embed_dim = self.config.hidden_size
         | 
| 272 | 
            +
                    self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype)
         | 
| 273 | 
            +
                    self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype)
         | 
| 274 | 
            +
                    self.act = ACT2FN[self.config.activation_function]
         | 
| 275 | 
            +
                    self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def __call__(self, hidden_states, deterministic: bool = True):
         | 
| 278 | 
            +
                    hidden_states = self.c_fc(hidden_states)
         | 
| 279 | 
            +
                    hidden_states = self.act(hidden_states)
         | 
| 280 | 
            +
                    hidden_states = self.c_proj(hidden_states)
         | 
| 281 | 
            +
                    hidden_states = self.dropout(hidden_states, deterministic=deterministic)
         | 
| 282 | 
            +
                    return hidden_states
         | 
| 283 | 
            +
             | 
| 284 | 
            +
             | 
| 285 | 
            +
            class FlaxGPT2Block(nn.Module):
         | 
| 286 | 
            +
                config: GPT2Config
         | 
| 287 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def setup(self):
         | 
| 290 | 
            +
                    hidden_size = self.config.hidden_size
         | 
| 291 | 
            +
                    inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
         | 
| 294 | 
            +
                    self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype)
         | 
| 295 | 
            +
                    self.ln_3 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
         | 
| 296 | 
            +
                    self.encoder_attn = FlaxGPT2Attention(config=self.config, dtype=self.dtype)
         | 
| 297 | 
            +
                    self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
         | 
| 298 | 
            +
                    self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                def __call__(
         | 
| 301 | 
            +
                    self,
         | 
| 302 | 
            +
                    hidden_states,
         | 
| 303 | 
            +
                    attention_mask=None,
         | 
| 304 | 
            +
                    encoder_hidden_states: Optional[jnp.ndarray] = None,
         | 
| 305 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 306 | 
            +
                    deterministic: bool = True,
         | 
| 307 | 
            +
                    init_cache: bool = False,
         | 
| 308 | 
            +
                    output_attentions: bool = False,
         | 
| 309 | 
            +
                ):
         | 
| 310 | 
            +
                    residual = hidden_states
         | 
| 311 | 
            +
                    hidden_states = self.ln_1(hidden_states)
         | 
| 312 | 
            +
                    outputs = self.attn(
         | 
| 313 | 
            +
                        hidden_states,
         | 
| 314 | 
            +
                        attention_mask=attention_mask,
         | 
| 315 | 
            +
                        deterministic=deterministic,
         | 
| 316 | 
            +
                        init_cache=init_cache,
         | 
| 317 | 
            +
                        output_attentions=output_attentions,
         | 
| 318 | 
            +
                    )
         | 
| 319 | 
            +
                    # residual connection
         | 
| 320 | 
            +
                    attn_output = outputs[0]
         | 
| 321 | 
            +
                    hidden_states = attn_output + residual
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    # Cross-Attention Block
         | 
| 324 | 
            +
                    if encoder_hidden_states is not None:
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        residual = hidden_states
         | 
| 327 | 
            +
                        hidden_states = self.ln_3(hidden_states)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                        cross_attn_outputs = self.encoder_attn(
         | 
| 330 | 
            +
                            hidden_states=hidden_states,
         | 
| 331 | 
            +
                            key_value_states=encoder_hidden_states,
         | 
| 332 | 
            +
                            attention_mask=encoder_attention_mask,
         | 
| 333 | 
            +
                            deterministic=deterministic,
         | 
| 334 | 
            +
                            output_attentions=output_attentions,
         | 
| 335 | 
            +
                        )
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                        # residual connection
         | 
| 338 | 
            +
                        cross_attn_output = cross_attn_outputs[0]
         | 
| 339 | 
            +
                        hidden_states = cross_attn_output + residual
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    residual = hidden_states
         | 
| 342 | 
            +
                    hidden_states = self.ln_2(hidden_states)
         | 
| 343 | 
            +
                    feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
         | 
| 344 | 
            +
                    # residual connection
         | 
| 345 | 
            +
                    hidden_states = residual + feed_forward_hidden_states
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    output = (hidden_states,) + outputs[1:]
         | 
| 348 | 
            +
                    if encoder_hidden_states is not None:
         | 
| 349 | 
            +
                        output = output + cross_attn_outputs[1:]
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    return output
         | 
| 352 | 
            +
             | 
| 353 | 
            +
             | 
| 354 | 
            +
            class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
         | 
| 355 | 
            +
                """
         | 
| 356 | 
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 357 | 
            +
                models.
         | 
| 358 | 
            +
                """
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                config_class = GPT2Config
         | 
| 361 | 
            +
                base_model_prefix = "transformer"
         | 
| 362 | 
            +
                module_class: nn.Module = None
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                def __init__(
         | 
| 365 | 
            +
                    self,
         | 
| 366 | 
            +
                    config: GPT2Config,
         | 
| 367 | 
            +
                    input_shape: Tuple = (1, 1),
         | 
| 368 | 
            +
                    seed: int = 0,
         | 
| 369 | 
            +
                    dtype: jnp.dtype = jnp.float32,
         | 
| 370 | 
            +
                    **kwargs,
         | 
| 371 | 
            +
                ):
         | 
| 372 | 
            +
                    module = self.module_class(config=config, dtype=dtype, **kwargs)
         | 
| 373 | 
            +
                    super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
         | 
| 376 | 
            +
                    # init input tensors
         | 
| 377 | 
            +
                    input_ids = jnp.zeros(input_shape, dtype="i4")
         | 
| 378 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 379 | 
            +
                    position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
         | 
| 380 | 
            +
                    params_rng, dropout_rng = jax.random.split(rng)
         | 
| 381 | 
            +
                    rngs = {"params": params_rng, "dropout": dropout_rng}
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    if self.config.add_cross_attention:
         | 
| 384 | 
            +
                        encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
         | 
| 385 | 
            +
                        encoder_attention_mask = attention_mask
         | 
| 386 | 
            +
                        module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False)
         | 
| 387 | 
            +
                    else:
         | 
| 388 | 
            +
                        module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    return module_init_outputs["params"]
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                @classmethod
         | 
| 393 | 
            +
                def _from_config(cls, config, **kwargs):
         | 
| 394 | 
            +
                    return super()._from_config(config, **kwargs)
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def init_cache(self, batch_size, max_length):
         | 
| 397 | 
            +
                    r"""
         | 
| 398 | 
            +
                    Args:
         | 
| 399 | 
            +
                        batch_size (:obj:`int`):
         | 
| 400 | 
            +
                            batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
         | 
| 401 | 
            +
                        max_length (:obj:`int`):
         | 
| 402 | 
            +
                            maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
         | 
| 403 | 
            +
                            cache.
         | 
| 404 | 
            +
                    """
         | 
| 405 | 
            +
                    # init input variables to retrieve cache
         | 
| 406 | 
            +
                    input_ids = jnp.ones((batch_size, max_length))
         | 
| 407 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 408 | 
            +
                    position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    init_variables = self.module.init(
         | 
| 411 | 
            +
                        jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
                    return init_variables["cache"]
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
         | 
| 416 | 
            +
                def __call__(
         | 
| 417 | 
            +
                    self,
         | 
| 418 | 
            +
                    input_ids,
         | 
| 419 | 
            +
                    attention_mask=None,
         | 
| 420 | 
            +
                    position_ids=None,
         | 
| 421 | 
            +
                    encoder_hidden_states: Optional[jnp.ndarray] = None,
         | 
| 422 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 423 | 
            +
                    params: dict = None,
         | 
| 424 | 
            +
                    past_key_values: dict = None,
         | 
| 425 | 
            +
                    dropout_rng: jax.random.PRNGKey = None,
         | 
| 426 | 
            +
                    train: bool = False,
         | 
| 427 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 428 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 429 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 430 | 
            +
                ):
         | 
| 431 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 432 | 
            +
                    output_hidden_states = (
         | 
| 433 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 434 | 
            +
                    )
         | 
| 435 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    if encoder_hidden_states is not None and encoder_attention_mask is None:
         | 
| 438 | 
            +
                        batch_size, sequence_length = encoder_hidden_states.shape[:2]
         | 
| 439 | 
            +
                        encoder_attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                    if position_ids is None:
         | 
| 444 | 
            +
                        if past_key_values is not None:
         | 
| 445 | 
            +
                            raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                        position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    if attention_mask is None:
         | 
| 450 | 
            +
                        attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    # Handle any PRNG if needed
         | 
| 453 | 
            +
                    rngs = {}
         | 
| 454 | 
            +
                    if dropout_rng is not None:
         | 
| 455 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                    inputs = {"params": params or self.params}
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                    # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module
         | 
| 460 | 
            +
                    if past_key_values:
         | 
| 461 | 
            +
                        inputs["cache"] = past_key_values
         | 
| 462 | 
            +
                        mutable = ["cache"]
         | 
| 463 | 
            +
                    else:
         | 
| 464 | 
            +
                        mutable = False
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                    outputs = self.module.apply(
         | 
| 467 | 
            +
                        inputs,
         | 
| 468 | 
            +
                        jnp.array(input_ids, dtype="i4"),
         | 
| 469 | 
            +
                        jnp.array(attention_mask, dtype="i4"),
         | 
| 470 | 
            +
                        jnp.array(position_ids, dtype="i4"),
         | 
| 471 | 
            +
                        encoder_hidden_states,
         | 
| 472 | 
            +
                        encoder_attention_mask,
         | 
| 473 | 
            +
                        not train,
         | 
| 474 | 
            +
                        False,
         | 
| 475 | 
            +
                        output_attentions,
         | 
| 476 | 
            +
                        output_hidden_states,
         | 
| 477 | 
            +
                        return_dict,
         | 
| 478 | 
            +
                        rngs=rngs,
         | 
| 479 | 
            +
                        mutable=mutable,
         | 
| 480 | 
            +
                    )
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                    # add updated cache to model output
         | 
| 483 | 
            +
                    if past_key_values is not None and return_dict:
         | 
| 484 | 
            +
                        outputs, past_key_values = outputs
         | 
| 485 | 
            +
                        outputs["past_key_values"] = unfreeze(past_key_values["cache"])
         | 
| 486 | 
            +
                        return outputs
         | 
| 487 | 
            +
                    elif past_key_values is not None and not return_dict:
         | 
| 488 | 
            +
                        outputs, past_key_values = outputs
         | 
| 489 | 
            +
                        outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    return outputs
         | 
| 492 | 
            +
             | 
| 493 | 
            +
             | 
| 494 | 
            +
            class FlaxGPT2BlockCollection(nn.Module):
         | 
| 495 | 
            +
                config: GPT2Config
         | 
| 496 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                def setup(self):
         | 
| 499 | 
            +
                    self.blocks = [
         | 
| 500 | 
            +
                        FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
         | 
| 501 | 
            +
                    ]
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                def __call__(
         | 
| 504 | 
            +
                    self,
         | 
| 505 | 
            +
                    hidden_states,
         | 
| 506 | 
            +
                    attention_mask=None,
         | 
| 507 | 
            +
                    encoder_hidden_states: Optional[jnp.ndarray] = None,
         | 
| 508 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 509 | 
            +
                    deterministic: bool = True,
         | 
| 510 | 
            +
                    init_cache: bool = False,
         | 
| 511 | 
            +
                    output_attentions: bool = False,
         | 
| 512 | 
            +
                    output_hidden_states: bool = False,
         | 
| 513 | 
            +
                    return_dict: bool = True,
         | 
| 514 | 
            +
                ):
         | 
| 515 | 
            +
                    all_attentions = () if output_attentions else None
         | 
| 516 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 517 | 
            +
                    all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                    for block in self.blocks:
         | 
| 520 | 
            +
                        if output_hidden_states:
         | 
| 521 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                        layer_outputs = block(
         | 
| 524 | 
            +
                            hidden_states,
         | 
| 525 | 
            +
                            attention_mask,
         | 
| 526 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 527 | 
            +
                            encoder_attention_mask=encoder_attention_mask,
         | 
| 528 | 
            +
                            deterministic=deterministic,
         | 
| 529 | 
            +
                            init_cache=init_cache,
         | 
| 530 | 
            +
                            output_attentions=output_attentions,
         | 
| 531 | 
            +
                        )
         | 
| 532 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                        if output_attentions:
         | 
| 535 | 
            +
                            all_attentions += (layer_outputs[1],)
         | 
| 536 | 
            +
                            if encoder_hidden_states is not None:
         | 
| 537 | 
            +
                                all_cross_attentions += (layer_outputs[2],)
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    if output_hidden_states:
         | 
| 540 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                    outputs = [hidden_states, all_hidden_states, all_attentions, all_cross_attentions]
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    if not return_dict:
         | 
| 545 | 
            +
                        return tuple(v for v in outputs if v is not None)
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    if encoder_hidden_states is None:
         | 
| 548 | 
            +
                        return FlaxBaseModelOutputWithPast(
         | 
| 549 | 
            +
                            last_hidden_state=hidden_states,
         | 
| 550 | 
            +
                            past_key_values=None,
         | 
| 551 | 
            +
                            hidden_states=all_hidden_states,
         | 
| 552 | 
            +
                            attentions=all_attentions,
         | 
| 553 | 
            +
                        )
         | 
| 554 | 
            +
                    else:
         | 
| 555 | 
            +
                        return FlaxBaseModelOutputWithPastAndCrossAttentions(
         | 
| 556 | 
            +
                            last_hidden_state=hidden_states,
         | 
| 557 | 
            +
                            past_key_values=None,
         | 
| 558 | 
            +
                            hidden_states=all_hidden_states,
         | 
| 559 | 
            +
                            attentions=all_attentions,
         | 
| 560 | 
            +
                            cross_attentions=all_cross_attentions,
         | 
| 561 | 
            +
                        )
         | 
| 562 | 
            +
             | 
| 563 | 
            +
            class FlaxGPT2Module(nn.Module):
         | 
| 564 | 
            +
                config: GPT2Config
         | 
| 565 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                def setup(self):
         | 
| 568 | 
            +
                    self.embed_dim = self.config.hidden_size
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    self.wte = nn.Embed(
         | 
| 571 | 
            +
                        self.config.vocab_size,
         | 
| 572 | 
            +
                        self.embed_dim,
         | 
| 573 | 
            +
                        embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
         | 
| 574 | 
            +
                        dtype=self.dtype,
         | 
| 575 | 
            +
                    )
         | 
| 576 | 
            +
                    self.wpe = nn.Embed(
         | 
| 577 | 
            +
                        self.config.max_position_embeddings,
         | 
| 578 | 
            +
                        self.embed_dim,
         | 
| 579 | 
            +
                        embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
         | 
| 580 | 
            +
                        dtype=self.dtype,
         | 
| 581 | 
            +
                    )
         | 
| 582 | 
            +
                    self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
         | 
| 583 | 
            +
                    self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)
         | 
| 584 | 
            +
                    self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                def __call__(
         | 
| 587 | 
            +
                    self,
         | 
| 588 | 
            +
                    input_ids,
         | 
| 589 | 
            +
                    attention_mask,
         | 
| 590 | 
            +
                    position_ids,
         | 
| 591 | 
            +
                    encoder_hidden_states: Optional[jnp.ndarray] = None,
         | 
| 592 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 593 | 
            +
                    deterministic=True,
         | 
| 594 | 
            +
                    init_cache: bool = False,
         | 
| 595 | 
            +
                    output_attentions: bool = False,
         | 
| 596 | 
            +
                    output_hidden_states: bool = False,
         | 
| 597 | 
            +
                    return_dict: bool = True,
         | 
| 598 | 
            +
                ):
         | 
| 599 | 
            +
                    input_embeds = self.wte(input_ids.astype("i4"))
         | 
| 600 | 
            +
                    position_embeds = self.wpe(position_ids.astype("i4"))
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    hidden_states = input_embeds + position_embeds
         | 
| 603 | 
            +
                    hidden_states = self.dropout(hidden_states, deterministic=deterministic)
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    outputs = self.h(
         | 
| 606 | 
            +
                        hidden_states,
         | 
| 607 | 
            +
                        attention_mask,
         | 
| 608 | 
            +
                        encoder_hidden_states,
         | 
| 609 | 
            +
                        encoder_attention_mask,
         | 
| 610 | 
            +
                        deterministic=deterministic,
         | 
| 611 | 
            +
                        init_cache=init_cache,
         | 
| 612 | 
            +
                        output_attentions=output_attentions,
         | 
| 613 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 614 | 
            +
                        return_dict=return_dict,
         | 
| 615 | 
            +
                    )
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                    hidden_states = outputs[0]
         | 
| 618 | 
            +
                    hidden_states = self.ln_f(hidden_states)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    if not return_dict:
         | 
| 621 | 
            +
                        return (hidden_states,) + outputs[1:]
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    if encoder_hidden_states is None:
         | 
| 624 | 
            +
                        return FlaxBaseModelOutput(
         | 
| 625 | 
            +
                            last_hidden_state=hidden_states,
         | 
| 626 | 
            +
                            hidden_states=outputs.hidden_states,
         | 
| 627 | 
            +
                            attentions=outputs.attentions,
         | 
| 628 | 
            +
                        )
         | 
| 629 | 
            +
                    else:
         | 
| 630 | 
            +
                        return FlaxBaseModelOutputWithPastAndCrossAttentions(
         | 
| 631 | 
            +
                            last_hidden_state=hidden_states,
         | 
| 632 | 
            +
                            hidden_states=outputs.hidden_states,
         | 
| 633 | 
            +
                            attentions=outputs.attentions,
         | 
| 634 | 
            +
                            cross_attentions=outputs.cross_attentions,
         | 
| 635 | 
            +
                        )
         | 
| 636 | 
            +
             | 
| 637 | 
            +
            @add_start_docstrings(
         | 
| 638 | 
            +
                "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
         | 
| 639 | 
            +
                GPT2_START_DOCSTRING,
         | 
| 640 | 
            +
            )
         | 
| 641 | 
            +
            class FlaxGPT2Model(FlaxGPT2PreTrainedModel):
         | 
| 642 | 
            +
                module_class = FlaxGPT2Module
         | 
| 643 | 
            +
             | 
| 644 | 
            +
             | 
| 645 | 
            +
            append_call_sample_docstring(
         | 
| 646 | 
            +
                FlaxGPT2Model, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC
         | 
| 647 | 
            +
            )
         | 
| 648 | 
            +
             | 
| 649 | 
            +
             | 
| 650 | 
            +
            class FlaxGPT2LMHeadModule(nn.Module):
         | 
| 651 | 
            +
                config: GPT2Config
         | 
| 652 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                def setup(self):
         | 
| 655 | 
            +
                    self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype)
         | 
| 656 | 
            +
                    self.lm_head = nn.Dense(
         | 
| 657 | 
            +
                        self.config.vocab_size,
         | 
| 658 | 
            +
                        use_bias=False,
         | 
| 659 | 
            +
                        dtype=self.dtype,
         | 
| 660 | 
            +
                        kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range, dtype=self.dtype),
         | 
| 661 | 
            +
                    )
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                def __call__(
         | 
| 664 | 
            +
                    self,
         | 
| 665 | 
            +
                    input_ids,
         | 
| 666 | 
            +
                    attention_mask,
         | 
| 667 | 
            +
                    position_ids,
         | 
| 668 | 
            +
                    encoder_hidden_states: Optional[jnp.ndarray] = None,
         | 
| 669 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 670 | 
            +
                    deterministic: bool = True,
         | 
| 671 | 
            +
                    init_cache: bool = False,
         | 
| 672 | 
            +
                    output_attentions: bool = False,
         | 
| 673 | 
            +
                    output_hidden_states: bool = False,
         | 
| 674 | 
            +
                    return_dict: bool = True,
         | 
| 675 | 
            +
                ):
         | 
| 676 | 
            +
                    outputs = self.transformer(
         | 
| 677 | 
            +
                        input_ids,
         | 
| 678 | 
            +
                        attention_mask,
         | 
| 679 | 
            +
                        position_ids,
         | 
| 680 | 
            +
                        encoder_hidden_states,
         | 
| 681 | 
            +
                        encoder_attention_mask,
         | 
| 682 | 
            +
                        deterministic=deterministic,
         | 
| 683 | 
            +
                        init_cache=init_cache,
         | 
| 684 | 
            +
                        output_attentions=output_attentions,
         | 
| 685 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 686 | 
            +
                        return_dict=return_dict,
         | 
| 687 | 
            +
                    )
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                    hidden_states = outputs[0]
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                    if self.config.tie_word_embeddings:
         | 
| 692 | 
            +
                        shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
         | 
| 693 | 
            +
                        lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
         | 
| 694 | 
            +
                    else:
         | 
| 695 | 
            +
                        lm_logits = self.lm_head(hidden_states)
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    if not return_dict:
         | 
| 698 | 
            +
                        return (lm_logits,) + outputs[1:]
         | 
| 699 | 
            +
             | 
| 700 | 
            +
                    if encoder_hidden_states is None:
         | 
| 701 | 
            +
                        return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
         | 
| 702 | 
            +
                    else:
         | 
| 703 | 
            +
                        return FlaxSeq2SeqLMOutput(
         | 
| 704 | 
            +
                            logits=lm_logits,
         | 
| 705 | 
            +
                            decoder_hidden_states=outputs.hidden_states,
         | 
| 706 | 
            +
                            decoder_attentions=outputs.attentions,
         | 
| 707 | 
            +
                            cross_attentions=outputs.cross_attentions,
         | 
| 708 | 
            +
                            encoder_last_hidden_state=encoder_hidden_states,
         | 
| 709 | 
            +
                            encoder_hidden_states=None,
         | 
| 710 | 
            +
                            encoder_attentions=None,
         | 
| 711 | 
            +
                        )
         | 
| 712 | 
            +
             | 
| 713 | 
            +
            @add_start_docstrings(
         | 
| 714 | 
            +
                """
         | 
| 715 | 
            +
                The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
         | 
| 716 | 
            +
                embeddings).
         | 
| 717 | 
            +
                """,
         | 
| 718 | 
            +
                GPT2_START_DOCSTRING,
         | 
| 719 | 
            +
            )
         | 
| 720 | 
            +
            class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel):
         | 
| 721 | 
            +
                module_class = FlaxGPT2LMHeadModule
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None):
         | 
| 724 | 
            +
                    # initializing the cache
         | 
| 725 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                    past_key_values = self.init_cache(batch_size, max_length)
         | 
| 728 | 
            +
                    # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
         | 
| 729 | 
            +
                    # But since GPT2 uses a causal mask, those positions are masked anyways.
         | 
| 730 | 
            +
                    # Thus we can create a single static attention_mask here, which is more efficient for compilation
         | 
| 731 | 
            +
                    extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
         | 
| 732 | 
            +
                    if attention_mask is not None:
         | 
| 733 | 
            +
                        position_ids = attention_mask.cumsum(axis=-1) - 1
         | 
| 734 | 
            +
                        extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
         | 
| 735 | 
            +
                    else:
         | 
| 736 | 
            +
                        position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
         | 
| 737 | 
            +
             | 
| 738 | 
            +
                    return {
         | 
| 739 | 
            +
                        "past_key_values": past_key_values,
         | 
| 740 | 
            +
                        "attention_mask": extended_attention_mask,
         | 
| 741 | 
            +
                        "position_ids": position_ids,
         | 
| 742 | 
            +
                    }
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                def update_inputs_for_generation(self, model_outputs, model_kwargs):
         | 
| 745 | 
            +
                    model_kwargs["past_key_values"] = model_outputs.past_key_values
         | 
| 746 | 
            +
                    model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
         | 
| 747 | 
            +
                    return model_kwargs
         | 
| 748 | 
            +
             | 
| 749 | 
            +
             | 
| 750 | 
            +
            append_call_sample_docstring(
         | 
| 751 | 
            +
                FlaxGPT2LMHeadModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC
         | 
| 752 | 
            +
            )
         | 
    	
        vit_gpt2/modeling_flax_vit_gpt2.py
    ADDED
    
    | @@ -0,0 +1,704 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Callable, Optional, Tuple
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import flax.linen as nn
         | 
| 4 | 
            +
            import jax
         | 
| 5 | 
            +
            import jax.numpy as jnp
         | 
| 6 | 
            +
            from flax.core.frozen_dict import FrozenDict, unfreeze
         | 
| 7 | 
            +
            from jax import lax
         | 
| 8 | 
            +
            from jax.random import PRNGKey
         | 
| 9 | 
            +
            from transformers import GPT2Config, FlaxViTModel, ViTConfig
         | 
| 10 | 
            +
            from transformers.modeling_flax_outputs import (
         | 
| 11 | 
            +
                FlaxCausalLMOutputWithCrossAttentions,
         | 
| 12 | 
            +
                FlaxSeq2SeqLMOutput,
         | 
| 13 | 
            +
                FlaxSeq2SeqModelOutput,
         | 
| 14 | 
            +
            )
         | 
| 15 | 
            +
            from transformers.models.bart.modeling_flax_bart import (
         | 
| 16 | 
            +
                shift_tokens_right,
         | 
| 17 | 
            +
            )
         | 
| 18 | 
            +
            from .modeling_flax_gpt2 import (
         | 
| 19 | 
            +
                FlaxGPT2Module,
         | 
| 20 | 
            +
                FlaxGPT2Model,
         | 
| 21 | 
            +
                FlaxPreTrainedModel
         | 
| 22 | 
            +
            )
         | 
| 23 | 
            +
            from transformers.models.vit.modeling_flax_vit import FlaxViTModule
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from .configuration_vit_gpt2 import ViTGPT2Config
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            class FlaxViTGPT2Module(nn.Module):
         | 
| 29 | 
            +
                config: ViTGPT2Config
         | 
| 30 | 
            +
                dtype: jnp.dtype = jnp.float32  # the dtype of the computation
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def setup(self):
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    self.encoder = FlaxViTModule(self.config.vit_config, dtype=self.dtype)
         | 
| 35 | 
            +
                    self.decoder = FlaxGPT2Module(self.config.gpt2_config, dtype=self.dtype)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def _get_encoder_module(self):
         | 
| 38 | 
            +
                    return self.encoder
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def _get_decoder_module(self):
         | 
| 41 | 
            +
                    return self.decoder
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def __call__(
         | 
| 44 | 
            +
                        self,
         | 
| 45 | 
            +
                        pixel_values,
         | 
| 46 | 
            +
                        input_ids,
         | 
| 47 | 
            +
                        attention_mask,
         | 
| 48 | 
            +
                        position_ids,
         | 
| 49 | 
            +
                        encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 50 | 
            +
                        output_attentions: bool = False,
         | 
| 51 | 
            +
                        output_hidden_states: bool = False,
         | 
| 52 | 
            +
                        return_dict: bool = True,
         | 
| 53 | 
            +
                        deterministic: bool = True,
         | 
| 54 | 
            +
                ):
         | 
| 55 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 56 | 
            +
                        pixel_values=pixel_values,
         | 
| 57 | 
            +
                        deterministic=deterministic,
         | 
| 58 | 
            +
                        output_attentions=output_attentions,
         | 
| 59 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 60 | 
            +
                        return_dict=return_dict,
         | 
| 61 | 
            +
                    )
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    decoder_outputs = self.decoder(
         | 
| 64 | 
            +
                        input_ids=input_ids,
         | 
| 65 | 
            +
                        attention_mask=attention_mask,
         | 
| 66 | 
            +
                        position_ids=position_ids,
         | 
| 67 | 
            +
                        encoder_hidden_states=encoder_outputs[0],
         | 
| 68 | 
            +
                        encoder_attention_mask=encoder_attention_mask,
         | 
| 69 | 
            +
                        deterministic=deterministic,
         | 
| 70 | 
            +
                        output_attentions=output_attentions,
         | 
| 71 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 72 | 
            +
                        return_dict=return_dict
         | 
| 73 | 
            +
                    )
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    return FlaxSeq2SeqModelOutput(
         | 
| 76 | 
            +
                        last_hidden_state=decoder_outputs.last_hidden_state,
         | 
| 77 | 
            +
                        decoder_hidden_states=decoder_outputs.hidden_states,
         | 
| 78 | 
            +
                        decoder_attentions=decoder_outputs.attentions,
         | 
| 79 | 
            +
                        cross_attentions=decoder_outputs.cross_attentions,
         | 
| 80 | 
            +
                        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
         | 
| 81 | 
            +
                        encoder_hidden_states=encoder_outputs.hidden_states,
         | 
| 82 | 
            +
                        encoder_attentions=encoder_outputs.attentions,
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            class FlaxViTGPT2ForConditionalGenerationModule(nn.Module):
         | 
| 87 | 
            +
                config: ViTGPT2Config
         | 
| 88 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 89 | 
            +
                bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def setup(self):
         | 
| 92 | 
            +
                    self.model = FlaxViTGPT2Module(config=self.config, dtype=self.dtype)
         | 
| 93 | 
            +
                    self.lm_head = nn.Dense(
         | 
| 94 | 
            +
                        self.model.decoder.embed_dim,
         | 
| 95 | 
            +
                        use_bias=False,
         | 
| 96 | 
            +
                        dtype=self.dtype,
         | 
| 97 | 
            +
                        kernel_init=jax.nn.initializers.normal(
         | 
| 98 | 
            +
                            self.config.gpt2_config.initializer_range, self.dtype
         | 
| 99 | 
            +
                        ),
         | 
| 100 | 
            +
                    )
         | 
| 101 | 
            +
                    self.final_logits_bias = self.param(
         | 
| 102 | 
            +
                        "final_logits_bias", self.bias_init, (1, self.model.decoder.embed_dim)
         | 
| 103 | 
            +
                    )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                def _get_encoder_module(self):
         | 
| 106 | 
            +
                    return self.model.encoder
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def _get_decoder_module(self):
         | 
| 109 | 
            +
                    return self.model.decoder
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def __call__(
         | 
| 112 | 
            +
                    self,
         | 
| 113 | 
            +
                    pixel_values,
         | 
| 114 | 
            +
                    input_ids,
         | 
| 115 | 
            +
                    attention_mask,
         | 
| 116 | 
            +
                    position_ids,
         | 
| 117 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 118 | 
            +
                    output_attentions: bool = False,
         | 
| 119 | 
            +
                    output_hidden_states: bool = False,
         | 
| 120 | 
            +
                    return_dict: bool = True,
         | 
| 121 | 
            +
                    deterministic: bool = True,
         | 
| 122 | 
            +
                ):
         | 
| 123 | 
            +
                    outputs = self.model(
         | 
| 124 | 
            +
                        pixel_values=pixel_values,
         | 
| 125 | 
            +
                        input_ids=input_ids,
         | 
| 126 | 
            +
                        attention_mask=attention_mask,
         | 
| 127 | 
            +
                        position_ids=position_ids,
         | 
| 128 | 
            +
                        encoder_attention_mask=encoder_attention_mask,
         | 
| 129 | 
            +
                        output_attentions=output_attentions,
         | 
| 130 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 131 | 
            +
                        return_dict=return_dict,
         | 
| 132 | 
            +
                        deterministic=deterministic,
         | 
| 133 | 
            +
                    )
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    hidden_states = outputs[0]
         | 
| 136 | 
            +
                    lm_logits = self.lm_head(hidden_states)
         | 
| 137 | 
            +
                    lm_logits += self.final_logits_bias
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    if not return_dict:
         | 
| 140 | 
            +
                        output = (lm_logits,) + outputs[1:]
         | 
| 141 | 
            +
                        return output
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    return FlaxSeq2SeqLMOutput(
         | 
| 144 | 
            +
                        logits=lm_logits,
         | 
| 145 | 
            +
                        decoder_hidden_states=outputs.decoder_hidden_states,
         | 
| 146 | 
            +
                        decoder_attentions=outputs.decoder_attentions,
         | 
| 147 | 
            +
                        cross_attentions=outputs.cross_attentions,
         | 
| 148 | 
            +
                        encoder_last_hidden_state=outputs.encoder_last_hidden_state,
         | 
| 149 | 
            +
                        encoder_hidden_states=outputs.encoder_hidden_states,
         | 
| 150 | 
            +
                        encoder_attentions=outputs.encoder_attentions,
         | 
| 151 | 
            +
                    )
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            class FlaxViTGPT2PreTrainedModel(FlaxPreTrainedModel):
         | 
| 154 | 
            +
                config_class = ViTGPT2Config
         | 
| 155 | 
            +
                base_model_prefix: str = "model"
         | 
| 156 | 
            +
                module_class: nn.Module = None
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                def __init__(
         | 
| 159 | 
            +
                    self,
         | 
| 160 | 
            +
                    config: ViTGPT2Config,
         | 
| 161 | 
            +
                    input_shape: Tuple = None,
         | 
| 162 | 
            +
                    seed: int = 0,
         | 
| 163 | 
            +
                    dtype: jnp.dtype = jnp.float32,
         | 
| 164 | 
            +
                    **kwargs,
         | 
| 165 | 
            +
                ):
         | 
| 166 | 
            +
                    if input_shape is None:
         | 
| 167 | 
            +
                        input_shape = (
         | 
| 168 | 
            +
                            (1, config.vit_config.image_size, config.vit_config.image_size, 3),
         | 
| 169 | 
            +
                            (1, 1),
         | 
| 170 | 
            +
                        )
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    module = self.module_class(config=config, dtype=dtype, **kwargs)
         | 
| 173 | 
            +
                    super().__init__(
         | 
| 174 | 
            +
                        config, module, input_shape=input_shape, seed=seed, dtype=dtype
         | 
| 175 | 
            +
                    )
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
         | 
| 178 | 
            +
                    # init input tensors
         | 
| 179 | 
            +
                    pixel_values = jax.random.normal(rng, input_shape[0])
         | 
| 180 | 
            +
                    # # make sure initialization pass will work for FlaxBartForSequenceClassificationModule
         | 
| 181 | 
            +
                    # input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    input_ids = jnp.zeros(input_shape[1], dtype="i4")
         | 
| 184 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 187 | 
            +
                    position_ids = jnp.broadcast_to(
         | 
| 188 | 
            +
                        jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 189 | 
            +
                    )
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    params_rng, dropout_rng = jax.random.split(rng)
         | 
| 192 | 
            +
                    rngs = {"params": params_rng, "dropout": dropout_rng}
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    return self.module.init(
         | 
| 195 | 
            +
                        rngs,
         | 
| 196 | 
            +
                        pixel_values,
         | 
| 197 | 
            +
                        input_ids,
         | 
| 198 | 
            +
                        attention_mask,
         | 
| 199 | 
            +
                        position_ids,
         | 
| 200 | 
            +
                    )["params"]
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                def init_cache(self, batch_size, max_length, encoder_outputs):
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    input_ids = jnp.ones((batch_size, max_length), dtype="i4")
         | 
| 205 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 206 | 
            +
                    position_ids = jnp.broadcast_to(
         | 
| 207 | 
            +
                        jnp.arange(jnp.atleast_2d(input_ids).shape[-1]),
         | 
| 208 | 
            +
                        input_ids.shape,
         | 
| 209 | 
            +
                    )
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    def _decoder_forward(
         | 
| 212 | 
            +
                        module,
         | 
| 213 | 
            +
                        input_ids,
         | 
| 214 | 
            +
                        attention_mask,
         | 
| 215 | 
            +
                        position_ids,
         | 
| 216 | 
            +
                        **kwargs,
         | 
| 217 | 
            +
                    ):
         | 
| 218 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 219 | 
            +
                        return decoder_module(
         | 
| 220 | 
            +
                            input_ids,
         | 
| 221 | 
            +
                            attention_mask,
         | 
| 222 | 
            +
                            position_ids,
         | 
| 223 | 
            +
                            **kwargs,
         | 
| 224 | 
            +
                        )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    init_variables = self.module.init(
         | 
| 227 | 
            +
                        jax.random.PRNGKey(0),
         | 
| 228 | 
            +
                        input_ids=input_ids,
         | 
| 229 | 
            +
                        attention_mask=attention_mask,
         | 
| 230 | 
            +
                        position_ids=position_ids,
         | 
| 231 | 
            +
                        encoder_hidden_states=encoder_outputs[0],
         | 
| 232 | 
            +
                        init_cache=True,
         | 
| 233 | 
            +
                        method=_decoder_forward,  # we only need to call the decoder to init the cache
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
                    return unfreeze(init_variables["cache"])
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                def encode(
         | 
| 238 | 
            +
                    self,
         | 
| 239 | 
            +
                    pixel_values: jnp.ndarray,
         | 
| 240 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 241 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 242 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 243 | 
            +
                    train: bool = False,
         | 
| 244 | 
            +
                    params: dict = None,
         | 
| 245 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 246 | 
            +
                ):
         | 
| 247 | 
            +
                    output_attentions = (
         | 
| 248 | 
            +
                        output_attentions
         | 
| 249 | 
            +
                        if output_attentions is not None
         | 
| 250 | 
            +
                        else self.config.output_attentions
         | 
| 251 | 
            +
                    )
         | 
| 252 | 
            +
                    output_hidden_states = (
         | 
| 253 | 
            +
                        output_hidden_states
         | 
| 254 | 
            +
                        if output_hidden_states is not None
         | 
| 255 | 
            +
                        else self.config.output_hidden_states
         | 
| 256 | 
            +
                    )
         | 
| 257 | 
            +
                    return_dict = (
         | 
| 258 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 259 | 
            +
                    )
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    # Handle any PRNG if needed
         | 
| 262 | 
            +
                    rngs = {}
         | 
| 263 | 
            +
                    if dropout_rng is not None:
         | 
| 264 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    def _encoder_forward(module, pixel_values, **kwargs):
         | 
| 267 | 
            +
                        encode_module = module._get_encoder_module()
         | 
| 268 | 
            +
                        return encode_module(pixel_values, **kwargs)
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    return self.module.apply(
         | 
| 271 | 
            +
                        {"params": params or self.params},
         | 
| 272 | 
            +
                        pixel_values=jnp.array(pixel_values, dtype="i4"),
         | 
| 273 | 
            +
                        output_attentions=output_attentions,
         | 
| 274 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 275 | 
            +
                        return_dict=return_dict,
         | 
| 276 | 
            +
                        deterministic=not train,
         | 
| 277 | 
            +
                        rngs=rngs,
         | 
| 278 | 
            +
                        method=_encoder_forward,
         | 
| 279 | 
            +
                    )
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                def decode(
         | 
| 282 | 
            +
                    self,
         | 
| 283 | 
            +
                    input_ids,
         | 
| 284 | 
            +
                    encoder_outputs,
         | 
| 285 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 286 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 287 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 288 | 
            +
                    past_key_values: dict = None,
         | 
| 289 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 290 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 291 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 292 | 
            +
                    train: bool = False,
         | 
| 293 | 
            +
                    params: dict = None,
         | 
| 294 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 295 | 
            +
                ):
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                    output_attentions = (
         | 
| 298 | 
            +
                        output_attentions
         | 
| 299 | 
            +
                        if output_attentions is not None
         | 
| 300 | 
            +
                        else self.config.output_attentions
         | 
| 301 | 
            +
                    )
         | 
| 302 | 
            +
                    output_hidden_states = (
         | 
| 303 | 
            +
                        output_hidden_states
         | 
| 304 | 
            +
                        if output_hidden_states is not None
         | 
| 305 | 
            +
                        else self.config.output_hidden_states
         | 
| 306 | 
            +
                    )
         | 
| 307 | 
            +
                    return_dict = (
         | 
| 308 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 309 | 
            +
                    )
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    encoder_hidden_states = encoder_outputs[0]
         | 
| 312 | 
            +
                    if encoder_attention_mask is None:
         | 
| 313 | 
            +
                        batch_size, sequence_length = encoder_hidden_states.shape[:2]
         | 
| 314 | 
            +
                        encoder_attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 317 | 
            +
                    if attention_mask is None:
         | 
| 318 | 
            +
                        attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    if position_ids is None:
         | 
| 321 | 
            +
                        if past_key_values is not None:
         | 
| 322 | 
            +
                            raise ValueError(
         | 
| 323 | 
            +
                                "Make sure to provide `position_ids` when passing `past_key_values`."
         | 
| 324 | 
            +
                            )
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 327 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 328 | 
            +
                        )
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    # Handle any PRNG if needed
         | 
| 331 | 
            +
                    rngs = {}
         | 
| 332 | 
            +
                    if dropout_rng is not None:
         | 
| 333 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    inputs = {"params": params or self.params}
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
         | 
| 338 | 
            +
                    # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
         | 
| 339 | 
            +
                    # it can be changed by FlaxGPT2Attention module
         | 
| 340 | 
            +
                    if past_key_values:
         | 
| 341 | 
            +
                        inputs["cache"] = past_key_values
         | 
| 342 | 
            +
                        mutable = ["cache"]
         | 
| 343 | 
            +
                    else:
         | 
| 344 | 
            +
                        mutable = False
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    def _decoder_forward(
         | 
| 347 | 
            +
                        module,
         | 
| 348 | 
            +
                        input_ids,
         | 
| 349 | 
            +
                        attention_mask,
         | 
| 350 | 
            +
                        position_ids,
         | 
| 351 | 
            +
                        **kwargs,
         | 
| 352 | 
            +
                    ):
         | 
| 353 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 354 | 
            +
                        return decoder_module(
         | 
| 355 | 
            +
                            input_ids,
         | 
| 356 | 
            +
                            attention_mask,
         | 
| 357 | 
            +
                            position_ids,
         | 
| 358 | 
            +
                            **kwargs,
         | 
| 359 | 
            +
                        )
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    outputs = self.module.apply(
         | 
| 362 | 
            +
                        inputs,
         | 
| 363 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 364 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 365 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 366 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 367 | 
            +
                        encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
         | 
| 368 | 
            +
                        output_attentions=output_attentions,
         | 
| 369 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 370 | 
            +
                        return_dict=return_dict,
         | 
| 371 | 
            +
                        deterministic=not train,
         | 
| 372 | 
            +
                        rngs=rngs,
         | 
| 373 | 
            +
                        mutable=mutable,
         | 
| 374 | 
            +
                        method=_decoder_forward,
         | 
| 375 | 
            +
                    )
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    # add updated cache to model output
         | 
| 378 | 
            +
                    if past_key_values is not None and return_dict:
         | 
| 379 | 
            +
                        outputs, past = outputs
         | 
| 380 | 
            +
                        outputs["past_key_values"] = unfreeze(past["cache"])
         | 
| 381 | 
            +
                        return outputs
         | 
| 382 | 
            +
                    elif past_key_values is not None and not return_dict:
         | 
| 383 | 
            +
                        outputs, past = outputs
         | 
| 384 | 
            +
                        outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    return outputs
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                def __call__(
         | 
| 389 | 
            +
                    self,
         | 
| 390 | 
            +
                    pixel_values: jnp.ndarray,
         | 
| 391 | 
            +
                    input_ids: Optional[jnp.ndarray] = None,
         | 
| 392 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 393 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 394 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 395 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 396 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 397 | 
            +
                    train: bool = False,
         | 
| 398 | 
            +
                    params: dict = None,
         | 
| 399 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 400 | 
            +
                ):
         | 
| 401 | 
            +
                    output_attentions = (
         | 
| 402 | 
            +
                        output_attentions
         | 
| 403 | 
            +
                        if output_attentions is not None
         | 
| 404 | 
            +
                        else self.config.output_attentions
         | 
| 405 | 
            +
                    )
         | 
| 406 | 
            +
                    output_hidden_states = (
         | 
| 407 | 
            +
                        output_hidden_states
         | 
| 408 | 
            +
                        if output_hidden_states is not None
         | 
| 409 | 
            +
                        else self.config.output_hidden_states
         | 
| 410 | 
            +
                    )
         | 
| 411 | 
            +
                    return_dict = (
         | 
| 412 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 413 | 
            +
                    )
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    # # prepare encoder inputs
         | 
| 418 | 
            +
                    # if encoder_attention_mask is None:
         | 
| 419 | 
            +
                    #     encoder_attention_mask = jnp.ones_like(input_ids)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    # if position_ids is None:
         | 
| 422 | 
            +
                    #     batch_size, sequence_length = input_ids.shape
         | 
| 423 | 
            +
                    #     position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    # prepare decoder inputs
         | 
| 426 | 
            +
                    # if decoder_input_ids is None:
         | 
| 427 | 
            +
                    #     decoder_input_ids = shift_tokens_right(
         | 
| 428 | 
            +
                    #         input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
         | 
| 429 | 
            +
                    #     ) # TODO: Check how to use this
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    if attention_mask is None:
         | 
| 432 | 
            +
                        attention_mask = jnp.ones_like(input_ids)
         | 
| 433 | 
            +
                    if position_ids is None:
         | 
| 434 | 
            +
                        batch_size, sequence_length = input_ids.shape
         | 
| 435 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 436 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 437 | 
            +
                        )
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    # Handle any PRNG if needed
         | 
| 440 | 
            +
                    rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    return self.module.apply(
         | 
| 443 | 
            +
                        {"params": params or self.params},
         | 
| 444 | 
            +
                        pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
         | 
| 445 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 446 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 447 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 448 | 
            +
                        output_attentions=output_attentions,
         | 
| 449 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 450 | 
            +
                        return_dict=return_dict,
         | 
| 451 | 
            +
                        deterministic=not train,
         | 
| 452 | 
            +
                        rngs=rngs,
         | 
| 453 | 
            +
                    )
         | 
| 454 | 
            +
             | 
| 455 | 
            +
             | 
| 456 | 
            +
            class FlaxViTGPT2ForConditionalGeneration(FlaxViTGPT2PreTrainedModel):
         | 
| 457 | 
            +
                module_class = FlaxViTGPT2ForConditionalGenerationModule
         | 
| 458 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                def decode(
         | 
| 461 | 
            +
                    self,
         | 
| 462 | 
            +
                    input_ids,
         | 
| 463 | 
            +
                    encoder_outputs,
         | 
| 464 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 465 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 466 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 467 | 
            +
                    past_key_values: dict = None,
         | 
| 468 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 469 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 470 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 471 | 
            +
                    deterministic: bool = True,
         | 
| 472 | 
            +
                    params: dict = None,
         | 
| 473 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 474 | 
            +
                ):
         | 
| 475 | 
            +
                    output_attentions = (
         | 
| 476 | 
            +
                        output_attentions
         | 
| 477 | 
            +
                        if output_attentions is not None
         | 
| 478 | 
            +
                        else self.config.output_attentions
         | 
| 479 | 
            +
                    )
         | 
| 480 | 
            +
                    output_hidden_states = (
         | 
| 481 | 
            +
                        output_hidden_states
         | 
| 482 | 
            +
                        if output_hidden_states is not None
         | 
| 483 | 
            +
                        else self.config.output_hidden_states
         | 
| 484 | 
            +
                    )
         | 
| 485 | 
            +
                    return_dict = (
         | 
| 486 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 487 | 
            +
                    )
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    encoder_hidden_states = encoder_outputs[0]
         | 
| 490 | 
            +
                    if encoder_attention_mask is None:
         | 
| 491 | 
            +
                        batch_size, sequence_length = encoder_hidden_states.shape[:2]
         | 
| 492 | 
            +
                        encoder_attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 495 | 
            +
                    if attention_mask is None:
         | 
| 496 | 
            +
                        attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    if position_ids is None:
         | 
| 499 | 
            +
                        if past_key_values is not None:
         | 
| 500 | 
            +
                            raise ValueError(
         | 
| 501 | 
            +
                                "Make sure to provide `position_ids` when passing `past_key_values`."
         | 
| 502 | 
            +
                            )
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 505 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 506 | 
            +
                        )
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    # Handle any PRNG if needed
         | 
| 509 | 
            +
                    rngs = {}
         | 
| 510 | 
            +
                    if dropout_rng is not None:
         | 
| 511 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    inputs = {"params": params or self.params}
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
         | 
| 516 | 
            +
                    # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
         | 
| 517 | 
            +
                    # it can be changed by FlaxGPT2Attention module
         | 
| 518 | 
            +
                    if past_key_values:
         | 
| 519 | 
            +
                        inputs["cache"] = past_key_values
         | 
| 520 | 
            +
                        mutable = ["cache"]
         | 
| 521 | 
            +
                    else:
         | 
| 522 | 
            +
                        mutable = False
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    def _decoder_forward(
         | 
| 525 | 
            +
                        module,
         | 
| 526 | 
            +
                        input_ids,
         | 
| 527 | 
            +
                        attention_mask,
         | 
| 528 | 
            +
                        position_ids,
         | 
| 529 | 
            +
                        **kwargs,
         | 
| 530 | 
            +
                    ):
         | 
| 531 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 532 | 
            +
                        outputs = decoder_module(
         | 
| 533 | 
            +
                            input_ids,
         | 
| 534 | 
            +
                            attention_mask,
         | 
| 535 | 
            +
                            position_ids,
         | 
| 536 | 
            +
                            **kwargs,
         | 
| 537 | 
            +
                        )
         | 
| 538 | 
            +
                        hidden_states = outputs[0]
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                        if self.config.tie_word_embeddings:
         | 
| 541 | 
            +
                            shared_embedding = module.model.variables["params"]["shared"][
         | 
| 542 | 
            +
                                "embedding"
         | 
| 543 | 
            +
                            ]
         | 
| 544 | 
            +
                            lm_logits = module.lm_head.apply(
         | 
| 545 | 
            +
                                {"params": {"kernel": shared_embedding.T}}, hidden_states
         | 
| 546 | 
            +
                            )
         | 
| 547 | 
            +
                        else:
         | 
| 548 | 
            +
                            lm_logits = module.lm_head(hidden_states)
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                        lm_logits += module.final_logits_bias
         | 
| 551 | 
            +
                        return lm_logits, outputs
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    outputs = self.module.apply(
         | 
| 554 | 
            +
                        inputs,
         | 
| 555 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 556 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 557 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 558 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 559 | 
            +
                        encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
         | 
| 560 | 
            +
                        output_attentions=output_attentions,
         | 
| 561 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 562 | 
            +
                        return_dict=return_dict,
         | 
| 563 | 
            +
                        deterministic=deterministic,
         | 
| 564 | 
            +
                        rngs=rngs,
         | 
| 565 | 
            +
                        mutable=mutable,
         | 
| 566 | 
            +
                        method=_decoder_forward,
         | 
| 567 | 
            +
                    )
         | 
| 568 | 
            +
             | 
| 569 | 
            +
                    if past_key_values is None:
         | 
| 570 | 
            +
                        lm_logits, outputs = outputs
         | 
| 571 | 
            +
                    else:
         | 
| 572 | 
            +
                        (lm_logits, outputs), past = outputs
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    if return_dict:
         | 
| 575 | 
            +
                        outputs = FlaxCausalLMOutputWithCrossAttentions(
         | 
| 576 | 
            +
                            logits=lm_logits,
         | 
| 577 | 
            +
                            hidden_states=outputs.hidden_states,
         | 
| 578 | 
            +
                            attentions=outputs.attentions,
         | 
| 579 | 
            +
                            cross_attentions=outputs.cross_attentions,
         | 
| 580 | 
            +
                        )
         | 
| 581 | 
            +
                    else:
         | 
| 582 | 
            +
                        outputs = (lm_logits,) + outputs[1:]
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    # add updated cache to model output
         | 
| 585 | 
            +
                    if past_key_values is not None and return_dict:
         | 
| 586 | 
            +
                        outputs["past_key_values"] = unfreeze(past["cache"])
         | 
| 587 | 
            +
                        return outputs
         | 
| 588 | 
            +
                    elif past_key_values is not None and not return_dict:
         | 
| 589 | 
            +
                        outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                    return outputs
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                def prepare_inputs_for_generation(
         | 
| 594 | 
            +
                    self,
         | 
| 595 | 
            +
                    input_ids,
         | 
| 596 | 
            +
                    max_length,
         | 
| 597 | 
            +
                    encoder_attention_mask: Optional[jnp.DeviceArray] = None,
         | 
| 598 | 
            +
                    attention_mask: Optional[jnp.DeviceArray] = None,
         | 
| 599 | 
            +
                    encoder_outputs=None,
         | 
| 600 | 
            +
                    **kwargs,
         | 
| 601 | 
            +
                ):
         | 
| 602 | 
            +
                    # initializing the cache
         | 
| 603 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
         | 
| 606 | 
            +
                    # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
         | 
| 607 | 
            +
                    # But since the decoder uses a causal mask, those positions are masked anyways.
         | 
| 608 | 
            +
                    # Thus we can create a single static attention_mask here, which is more efficient for compilation
         | 
| 609 | 
            +
                    extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
         | 
| 610 | 
            +
                    if attention_mask is not None:
         | 
| 611 | 
            +
                        position_ids = attention_mask.cumsum(axis=-1) - 1
         | 
| 612 | 
            +
                        extended_attention_mask = lax.dynamic_update_slice(
         | 
| 613 | 
            +
                            extended_attention_mask, attention_mask, (0, 0)
         | 
| 614 | 
            +
                        )
         | 
| 615 | 
            +
                    else:
         | 
| 616 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 617 | 
            +
                            jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
         | 
| 618 | 
            +
                        )
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    return {
         | 
| 621 | 
            +
                        "past_key_values": past_key_values,
         | 
| 622 | 
            +
                        "encoder_outputs": encoder_outputs,
         | 
| 623 | 
            +
                        "encoder_attention_mask": encoder_attention_mask,
         | 
| 624 | 
            +
                        "attention_mask": extended_attention_mask,
         | 
| 625 | 
            +
                        "position_ids": position_ids,
         | 
| 626 | 
            +
                    }
         | 
| 627 | 
            +
             | 
| 628 | 
            +
                def update_inputs_for_generation(self, model_outputs, model_kwargs):
         | 
| 629 | 
            +
                    model_kwargs["past_key_values"] = model_outputs.past_key_values
         | 
| 630 | 
            +
                    model_kwargs["position_ids"] = (
         | 
| 631 | 
            +
                        model_kwargs["position_ids"][:, -1:] + 1
         | 
| 632 | 
            +
                    )
         | 
| 633 | 
            +
                    return model_kwargs
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                @classmethod
         | 
| 636 | 
            +
                def from_vit_gpt2_pretrained(
         | 
| 637 | 
            +
                    cls,
         | 
| 638 | 
            +
                    vit_model_name_or_path: str = None,
         | 
| 639 | 
            +
                    gpt2_model_name_or_path: str = None,
         | 
| 640 | 
            +
                    *model_args,
         | 
| 641 | 
            +
                    **kwargs,
         | 
| 642 | 
            +
                ) -> FlaxViTGPT2PreTrainedModel:
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                    kwargs_gpt2 = {
         | 
| 645 | 
            +
                        argument[len("gpt2_") :]: value
         | 
| 646 | 
            +
                        for argument, value in kwargs.items()
         | 
| 647 | 
            +
                        if argument.startswith("gpt2_")
         | 
| 648 | 
            +
                    }
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                    kwargs_vit = {
         | 
| 651 | 
            +
                        argument[len("vit_") :]: value
         | 
| 652 | 
            +
                        for argument, value in kwargs.items()
         | 
| 653 | 
            +
                        if argument.startswith("vit_")
         | 
| 654 | 
            +
                    }
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                    # remove gpt2, vit kwargs from kwargs
         | 
| 657 | 
            +
                    for key in kwargs_gpt2.keys():
         | 
| 658 | 
            +
                        del kwargs["gpt2_" + key]
         | 
| 659 | 
            +
                    for key in kwargs_vit.keys():
         | 
| 660 | 
            +
                        del kwargs["vit_" + key]
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                    # Load and initialize the gpt2 and vit model
         | 
| 663 | 
            +
                    gpt2_model = kwargs_gpt2.pop("model", None)
         | 
| 664 | 
            +
                    if gpt2_model is None:
         | 
| 665 | 
            +
                        assert (
         | 
| 666 | 
            +
                            gpt2_model_name_or_path is not None
         | 
| 667 | 
            +
                        ), "If `model` is not defined as an argument, a `gpt2_model_name_or_path` has to be defined"
         | 
| 668 | 
            +
             | 
| 669 | 
            +
                        if "config" not in kwargs_gpt2:
         | 
| 670 | 
            +
                            gpt2_config = GPT2Config.from_pretrained(gpt2_model_name_or_path)
         | 
| 671 | 
            +
                            kwargs_gpt2["config"] = gpt2_config
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                        kwargs_gpt2["config"].add_cross_attention = True
         | 
| 674 | 
            +
                        gpt2_model = FlaxGPT2Model.from_pretrained(
         | 
| 675 | 
            +
                            gpt2_model_name_or_path, *model_args, **kwargs_gpt2
         | 
| 676 | 
            +
                        )
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    vit_model = kwargs_vit.pop("model", None)
         | 
| 679 | 
            +
                    if vit_model is None:
         | 
| 680 | 
            +
                        assert (
         | 
| 681 | 
            +
                            vit_model_name_or_path is not None
         | 
| 682 | 
            +
                        ), "If `model` is not defined as an argument, a `vit_model_name_or_path` has to be defined"
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                        if "config" not in kwargs_vit:
         | 
| 685 | 
            +
                            vit_config = ViTConfig.from_pretrained(vit_model_name_or_path)
         | 
| 686 | 
            +
                            kwargs_vit["config"] = vit_config
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                        vit_model = FlaxViTModel.from_pretrained(
         | 
| 689 | 
            +
                            vit_model_name_or_path, *model_args, **kwargs_vit
         | 
| 690 | 
            +
                        )
         | 
| 691 | 
            +
             | 
| 692 | 
            +
                    # instantiate config with corresponding kwargs
         | 
| 693 | 
            +
                    dtype = kwargs.pop("dtype", jnp.float32)
         | 
| 694 | 
            +
                    config = ViTGPT2Config.from_vit_gpt2_configs(
         | 
| 695 | 
            +
                        vit_model.config, gpt2_model.config, **kwargs
         | 
| 696 | 
            +
                    )
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                    # init model
         | 
| 699 | 
            +
                    model = cls(config, *model_args, dtype=dtype, **kwargs)
         | 
| 700 | 
            +
                    model.params["model"]["encoder"] = vit_model.params
         | 
| 701 | 
            +
                    model.params["model"]["decoder"] = gpt2_model.params
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    return model
         | 
| 704 | 
            +
             | 
    	
        vit_gpt2/modeling_flax_vit_gpt2_lm.py
    ADDED
    
    | @@ -0,0 +1,684 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Callable, Optional, Tuple
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import flax.linen as nn
         | 
| 4 | 
            +
            import jax
         | 
| 5 | 
            +
            import jax.numpy as jnp
         | 
| 6 | 
            +
            from flax.core.frozen_dict import FrozenDict, unfreeze
         | 
| 7 | 
            +
            from jax import lax
         | 
| 8 | 
            +
            from jax.random import PRNGKey
         | 
| 9 | 
            +
            from transformers import GPT2Config, FlaxViTModel, ViTConfig
         | 
| 10 | 
            +
            from transformers.modeling_flax_outputs import (
         | 
| 11 | 
            +
                FlaxCausalLMOutputWithCrossAttentions,
         | 
| 12 | 
            +
                FlaxSeq2SeqLMOutput,
         | 
| 13 | 
            +
                FlaxSeq2SeqModelOutput,
         | 
| 14 | 
            +
            )
         | 
| 15 | 
            +
            from transformers.models.bart.modeling_flax_bart import (
         | 
| 16 | 
            +
                shift_tokens_right,
         | 
| 17 | 
            +
            )
         | 
| 18 | 
            +
            from .modeling_flax_gpt2 import (
         | 
| 19 | 
            +
                FlaxGPT2Module,
         | 
| 20 | 
            +
                FlaxGPT2Model,
         | 
| 21 | 
            +
                FlaxGPT2LMHeadModule,
         | 
| 22 | 
            +
                FlaxGPT2LMHeadModel,
         | 
| 23 | 
            +
                FlaxPreTrainedModel
         | 
| 24 | 
            +
            )
         | 
| 25 | 
            +
            from transformers.models.vit.modeling_flax_vit import FlaxViTModule
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from .configuration_vit_gpt2 import ViTGPT2Config
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
         | 
| 31 | 
            +
                """
         | 
| 32 | 
            +
                Shift input ids one token to the right.
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
                shifted_input_ids = jnp.roll(input_ids, 1, axis=-1)
         | 
| 35 | 
            +
                shifted_input_ids = jax.ops.index_update(shifted_input_ids, (..., 0), decoder_start_token_id)
         | 
| 36 | 
            +
                # replace possible -100 values in labels by `pad_token_id`
         | 
| 37 | 
            +
                shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                return shifted_input_ids
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            class FlaxViTGPT2LMModule(nn.Module):
         | 
| 42 | 
            +
                config: ViTGPT2Config
         | 
| 43 | 
            +
                dtype: jnp.dtype = jnp.float32  # the dtype of the computation
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def setup(self):
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    self.encoder = FlaxViTModule(self.config.vit_config, dtype=self.dtype)
         | 
| 48 | 
            +
                    self.decoder = FlaxGPT2LMHeadModule(self.config.gpt2_config, dtype=self.dtype)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def _get_encoder_module(self):
         | 
| 51 | 
            +
                    return self.encoder
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def _get_decoder_module(self):
         | 
| 54 | 
            +
                    return self.decoder
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def __call__(
         | 
| 57 | 
            +
                        self,
         | 
| 58 | 
            +
                        pixel_values,
         | 
| 59 | 
            +
                        input_ids,
         | 
| 60 | 
            +
                        attention_mask,
         | 
| 61 | 
            +
                        position_ids,
         | 
| 62 | 
            +
                        encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 63 | 
            +
                        output_attentions: bool = False,
         | 
| 64 | 
            +
                        output_hidden_states: bool = False,
         | 
| 65 | 
            +
                        return_dict: bool = True,
         | 
| 66 | 
            +
                        deterministic: bool = True,
         | 
| 67 | 
            +
                ):
         | 
| 68 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 69 | 
            +
                        pixel_values=pixel_values,
         | 
| 70 | 
            +
                        deterministic=deterministic,
         | 
| 71 | 
            +
                        output_attentions=output_attentions,
         | 
| 72 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 73 | 
            +
                        return_dict=return_dict,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    decoder_outputs = self.decoder(
         | 
| 77 | 
            +
                        input_ids=input_ids,
         | 
| 78 | 
            +
                        attention_mask=attention_mask,
         | 
| 79 | 
            +
                        position_ids=position_ids,
         | 
| 80 | 
            +
                        encoder_hidden_states=encoder_outputs[0],
         | 
| 81 | 
            +
                        encoder_attention_mask=encoder_attention_mask,
         | 
| 82 | 
            +
                        deterministic=deterministic,
         | 
| 83 | 
            +
                        output_attentions=output_attentions,
         | 
| 84 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 85 | 
            +
                        return_dict=return_dict
         | 
| 86 | 
            +
                    )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    if not return_dict:
         | 
| 89 | 
            +
                        return decoder_outputs + encoder_outputs
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    return FlaxSeq2SeqLMOutput(
         | 
| 92 | 
            +
                        logits=decoder_outputs.logits,
         | 
| 93 | 
            +
                        decoder_hidden_states=decoder_outputs.decoder_hidden_states,
         | 
| 94 | 
            +
                        decoder_attentions=decoder_outputs.decoder_attentions,
         | 
| 95 | 
            +
                        cross_attentions=decoder_outputs.cross_attentions,
         | 
| 96 | 
            +
                        encoder_last_hidden_state=encoder_outputs.last_hidden_state,
         | 
| 97 | 
            +
                        encoder_hidden_states=encoder_outputs.hidden_states,
         | 
| 98 | 
            +
                        encoder_attentions=encoder_outputs.attentions,
         | 
| 99 | 
            +
                    )
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            class FlaxViTGPT2LMForConditionalGenerationModule(nn.Module):
         | 
| 102 | 
            +
                config: ViTGPT2Config
         | 
| 103 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 104 | 
            +
                bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def setup(self):
         | 
| 107 | 
            +
                    self.model = FlaxViTGPT2LMModule(config=self.config, dtype=self.dtype)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def _get_encoder_module(self):
         | 
| 110 | 
            +
                    return self.model.encoder
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                def _get_decoder_module(self):
         | 
| 113 | 
            +
                    return self.model.decoder
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                def __call__(
         | 
| 116 | 
            +
                    self,
         | 
| 117 | 
            +
                    pixel_values,
         | 
| 118 | 
            +
                    input_ids,
         | 
| 119 | 
            +
                    attention_mask,
         | 
| 120 | 
            +
                    position_ids,
         | 
| 121 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 122 | 
            +
                    output_attentions: bool = False,
         | 
| 123 | 
            +
                    output_hidden_states: bool = False,
         | 
| 124 | 
            +
                    return_dict: bool = True,
         | 
| 125 | 
            +
                    deterministic: bool = True,
         | 
| 126 | 
            +
                ):
         | 
| 127 | 
            +
                    outputs = self.model(
         | 
| 128 | 
            +
                        pixel_values=pixel_values,
         | 
| 129 | 
            +
                        input_ids=input_ids,
         | 
| 130 | 
            +
                        attention_mask=attention_mask,
         | 
| 131 | 
            +
                        position_ids=position_ids,
         | 
| 132 | 
            +
                        encoder_attention_mask=encoder_attention_mask,
         | 
| 133 | 
            +
                        output_attentions=output_attentions,
         | 
| 134 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 135 | 
            +
                        return_dict=return_dict,
         | 
| 136 | 
            +
                        deterministic=deterministic,
         | 
| 137 | 
            +
                    )
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    return outputs
         | 
| 140 | 
            +
             | 
| 141 | 
            +
             | 
| 142 | 
            +
            class FlaxViTGPT2LMPreTrainedModel(FlaxPreTrainedModel):
         | 
| 143 | 
            +
                config_class = ViTGPT2Config
         | 
| 144 | 
            +
                base_model_prefix: str = "model"
         | 
| 145 | 
            +
                module_class: nn.Module = None
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                def __init__(
         | 
| 148 | 
            +
                    self,
         | 
| 149 | 
            +
                    config: ViTGPT2Config,
         | 
| 150 | 
            +
                    input_shape: Tuple = None,
         | 
| 151 | 
            +
                    seed: int = 0,
         | 
| 152 | 
            +
                    dtype: jnp.dtype = jnp.float32,
         | 
| 153 | 
            +
                    **kwargs,
         | 
| 154 | 
            +
                ):
         | 
| 155 | 
            +
                    if input_shape is None:
         | 
| 156 | 
            +
                        input_shape = (
         | 
| 157 | 
            +
                            (1, config.vit_config.image_size, config.vit_config.image_size, 3),
         | 
| 158 | 
            +
                            (1, 1),
         | 
| 159 | 
            +
                        )
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    module = self.module_class(config=config, dtype=dtype, **kwargs)
         | 
| 162 | 
            +
                    super().__init__(
         | 
| 163 | 
            +
                        config, module, input_shape=input_shape, seed=seed, dtype=dtype
         | 
| 164 | 
            +
                    )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
         | 
| 167 | 
            +
                    # init input tensors
         | 
| 168 | 
            +
                    pixel_values = jax.random.normal(rng, input_shape[0])
         | 
| 169 | 
            +
                    # # make sure initialization pass will work for FlaxBartForSequenceClassificationModule
         | 
| 170 | 
            +
                    # input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    input_ids = jnp.zeros(input_shape[1], dtype="i4")
         | 
| 173 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 176 | 
            +
                    position_ids = jnp.broadcast_to(
         | 
| 177 | 
            +
                        jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 178 | 
            +
                    )
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    params_rng, dropout_rng = jax.random.split(rng)
         | 
| 181 | 
            +
                    rngs = {"params": params_rng, "dropout": dropout_rng}
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    return self.module.init(
         | 
| 184 | 
            +
                        rngs,
         | 
| 185 | 
            +
                        pixel_values,
         | 
| 186 | 
            +
                        input_ids,
         | 
| 187 | 
            +
                        attention_mask,
         | 
| 188 | 
            +
                        position_ids,
         | 
| 189 | 
            +
                    )["params"]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def init_cache(self, batch_size, max_length, encoder_outputs):
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    input_ids = jnp.ones((batch_size, max_length), dtype="i4")
         | 
| 194 | 
            +
                    attention_mask = jnp.ones_like(input_ids)
         | 
| 195 | 
            +
                    position_ids = jnp.broadcast_to(
         | 
| 196 | 
            +
                        jnp.arange(jnp.atleast_2d(input_ids).shape[-1]),
         | 
| 197 | 
            +
                        input_ids.shape,
         | 
| 198 | 
            +
                    )
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    def _decoder_forward(
         | 
| 201 | 
            +
                        module,
         | 
| 202 | 
            +
                        input_ids,
         | 
| 203 | 
            +
                        attention_mask,
         | 
| 204 | 
            +
                        position_ids,
         | 
| 205 | 
            +
                        **kwargs,
         | 
| 206 | 
            +
                    ):
         | 
| 207 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 208 | 
            +
                        return decoder_module(
         | 
| 209 | 
            +
                            input_ids,
         | 
| 210 | 
            +
                            attention_mask,
         | 
| 211 | 
            +
                            position_ids,
         | 
| 212 | 
            +
                            **kwargs,
         | 
| 213 | 
            +
                        )
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    init_variables = self.module.init(
         | 
| 216 | 
            +
                        jax.random.PRNGKey(0),
         | 
| 217 | 
            +
                        input_ids=input_ids,
         | 
| 218 | 
            +
                        attention_mask=attention_mask,
         | 
| 219 | 
            +
                        position_ids=position_ids,
         | 
| 220 | 
            +
                        encoder_hidden_states=encoder_outputs[0],
         | 
| 221 | 
            +
                        init_cache=True,
         | 
| 222 | 
            +
                        method=_decoder_forward,  # we only need to call the decoder to init the cache
         | 
| 223 | 
            +
                    )
         | 
| 224 | 
            +
                    return unfreeze(init_variables["cache"])
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                def encode(
         | 
| 227 | 
            +
                    self,
         | 
| 228 | 
            +
                    pixel_values: jnp.ndarray,
         | 
| 229 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 230 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 231 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 232 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 233 | 
            +
                    train: bool = False,
         | 
| 234 | 
            +
                    params: dict = None,
         | 
| 235 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 236 | 
            +
                ):
         | 
| 237 | 
            +
                    output_attentions = (
         | 
| 238 | 
            +
                        output_attentions
         | 
| 239 | 
            +
                        if output_attentions is not None
         | 
| 240 | 
            +
                        else self.config.output_attentions
         | 
| 241 | 
            +
                    )
         | 
| 242 | 
            +
                    output_hidden_states = (
         | 
| 243 | 
            +
                        output_hidden_states
         | 
| 244 | 
            +
                        if output_hidden_states is not None
         | 
| 245 | 
            +
                        else self.config.output_hidden_states
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                    return_dict = (
         | 
| 248 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 249 | 
            +
                    )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    # Handle any PRNG if needed
         | 
| 254 | 
            +
                    rngs = {}
         | 
| 255 | 
            +
                    if dropout_rng is not None:
         | 
| 256 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    def _encoder_forward(module, pixel_values, **kwargs):
         | 
| 259 | 
            +
                        encode_module = module._get_encoder_module()
         | 
| 260 | 
            +
                        return encode_module(pixel_values, **kwargs)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    return self.module.apply(
         | 
| 263 | 
            +
                        {"params": params or self.params},
         | 
| 264 | 
            +
                        pixel_values=jnp.array(pixel_values, dtype="i4"),
         | 
| 265 | 
            +
                        output_attentions=output_attentions,
         | 
| 266 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 267 | 
            +
                        return_dict=return_dict,
         | 
| 268 | 
            +
                        deterministic=not train,
         | 
| 269 | 
            +
                        rngs=rngs,
         | 
| 270 | 
            +
                        method=_encoder_forward,
         | 
| 271 | 
            +
                    )
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                def decode(
         | 
| 274 | 
            +
                    self,
         | 
| 275 | 
            +
                    input_ids,
         | 
| 276 | 
            +
                    encoder_outputs,
         | 
| 277 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 278 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 279 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 280 | 
            +
                    past_key_values: dict = None,
         | 
| 281 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 282 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 283 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 284 | 
            +
                    train: bool = False,
         | 
| 285 | 
            +
                    params: dict = None,
         | 
| 286 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 287 | 
            +
                ):
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    output_attentions = (
         | 
| 290 | 
            +
                        output_attentions
         | 
| 291 | 
            +
                        if output_attentions is not None
         | 
| 292 | 
            +
                        else self.config.output_attentions
         | 
| 293 | 
            +
                    )
         | 
| 294 | 
            +
                    output_hidden_states = (
         | 
| 295 | 
            +
                        output_hidden_states
         | 
| 296 | 
            +
                        if output_hidden_states is not None
         | 
| 297 | 
            +
                        else self.config.output_hidden_states
         | 
| 298 | 
            +
                    )
         | 
| 299 | 
            +
                    return_dict = (
         | 
| 300 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 301 | 
            +
                    )
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    encoder_hidden_states = encoder_outputs[0]
         | 
| 304 | 
            +
                    if encoder_attention_mask is None:
         | 
| 305 | 
            +
                        batch_size, sequence_length = encoder_hidden_states.shape[:2]
         | 
| 306 | 
            +
                        encoder_attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 309 | 
            +
                    if attention_mask is None:
         | 
| 310 | 
            +
                        attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    if position_ids is None:
         | 
| 313 | 
            +
                        if past_key_values is not None:
         | 
| 314 | 
            +
                            raise ValueError(
         | 
| 315 | 
            +
                                "Make sure to provide `position_ids` when passing `past_key_values`."
         | 
| 316 | 
            +
                            )
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 319 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 320 | 
            +
                        )
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    # Handle any PRNG if needed
         | 
| 323 | 
            +
                    rngs = {}
         | 
| 324 | 
            +
                    if dropout_rng is not None:
         | 
| 325 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    inputs = {"params": params or self.params}
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
         | 
| 330 | 
            +
                    # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
         | 
| 331 | 
            +
                    # it can be changed by FlaxGPT2Attention module
         | 
| 332 | 
            +
                    if past_key_values:
         | 
| 333 | 
            +
                        inputs["cache"] = past_key_values
         | 
| 334 | 
            +
                        mutable = ["cache"]
         | 
| 335 | 
            +
                    else:
         | 
| 336 | 
            +
                        mutable = False
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    def _decoder_forward(
         | 
| 339 | 
            +
                        module,
         | 
| 340 | 
            +
                        input_ids,
         | 
| 341 | 
            +
                        attention_mask,
         | 
| 342 | 
            +
                        position_ids,
         | 
| 343 | 
            +
                        **kwargs,
         | 
| 344 | 
            +
                    ):
         | 
| 345 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 346 | 
            +
                        return decoder_module(
         | 
| 347 | 
            +
                            input_ids,
         | 
| 348 | 
            +
                            attention_mask,
         | 
| 349 | 
            +
                            position_ids,
         | 
| 350 | 
            +
                            **kwargs,
         | 
| 351 | 
            +
                        )
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    outputs = self.module.apply(
         | 
| 354 | 
            +
                        inputs,
         | 
| 355 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 356 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 357 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 358 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 359 | 
            +
                        encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
         | 
| 360 | 
            +
                        output_attentions=output_attentions,
         | 
| 361 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 362 | 
            +
                        return_dict=return_dict,
         | 
| 363 | 
            +
                        deterministic=not train,
         | 
| 364 | 
            +
                        rngs=rngs,
         | 
| 365 | 
            +
                        mutable=mutable,
         | 
| 366 | 
            +
                        method=_decoder_forward,
         | 
| 367 | 
            +
                    )
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    # add updated cache to model output
         | 
| 370 | 
            +
                    if past_key_values is not None and return_dict:
         | 
| 371 | 
            +
                        outputs, past = outputs
         | 
| 372 | 
            +
                        outputs["past_key_values"] = unfreeze(past["cache"])
         | 
| 373 | 
            +
                        return outputs
         | 
| 374 | 
            +
                    elif past_key_values is not None and not return_dict:
         | 
| 375 | 
            +
                        outputs, past = outputs
         | 
| 376 | 
            +
                        outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    return outputs
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                def __call__(
         | 
| 381 | 
            +
                    self,
         | 
| 382 | 
            +
                    pixel_values: jnp.ndarray,
         | 
| 383 | 
            +
                    input_ids: Optional[jnp.ndarray] = None,
         | 
| 384 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 385 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 386 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 387 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 388 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 389 | 
            +
                    train: bool = False,
         | 
| 390 | 
            +
                    params: dict = None,
         | 
| 391 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 392 | 
            +
                ):
         | 
| 393 | 
            +
                    output_attentions = (
         | 
| 394 | 
            +
                        output_attentions
         | 
| 395 | 
            +
                        if output_attentions is not None
         | 
| 396 | 
            +
                        else self.config.output_attentions
         | 
| 397 | 
            +
                    )
         | 
| 398 | 
            +
                    output_hidden_states = (
         | 
| 399 | 
            +
                        output_hidden_states
         | 
| 400 | 
            +
                        if output_hidden_states is not None
         | 
| 401 | 
            +
                        else self.config.output_hidden_states
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
                    return_dict = (
         | 
| 404 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 405 | 
            +
                    )
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    # # prepare encoder inputs
         | 
| 410 | 
            +
                    # if encoder_attention_mask is None:
         | 
| 411 | 
            +
                    #     encoder_attention_mask = jnp.ones_like(input_ids)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    # if position_ids is None:
         | 
| 414 | 
            +
                    #     batch_size, sequence_length = input_ids.shape
         | 
| 415 | 
            +
                    #     position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    # prepare decoder inputs
         | 
| 418 | 
            +
                    # if decoder_input_ids is None:
         | 
| 419 | 
            +
                    #     decoder_input_ids = shift_tokens_right(
         | 
| 420 | 
            +
                    #         input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
         | 
| 421 | 
            +
                    #     ) # TODO: Check how to use this
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    if attention_mask is None:
         | 
| 424 | 
            +
                        attention_mask = jnp.ones_like(input_ids)
         | 
| 425 | 
            +
                    if position_ids is None:
         | 
| 426 | 
            +
                        batch_size, sequence_length = input_ids.shape
         | 
| 427 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 428 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 429 | 
            +
                        )
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    # Handle any PRNG if needed
         | 
| 432 | 
            +
                    rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    return self.module.apply(
         | 
| 435 | 
            +
                        {"params": params or self.params},
         | 
| 436 | 
            +
                        pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
         | 
| 437 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 438 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 439 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 440 | 
            +
                        output_attentions=output_attentions,
         | 
| 441 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 442 | 
            +
                        return_dict=return_dict,
         | 
| 443 | 
            +
                        deterministic=not train,
         | 
| 444 | 
            +
                        rngs=rngs,
         | 
| 445 | 
            +
                    )
         | 
| 446 | 
            +
             | 
| 447 | 
            +
             | 
| 448 | 
            +
            class FlaxViTGPT2LMForConditionalGeneration(FlaxViTGPT2LMPreTrainedModel):
         | 
| 449 | 
            +
                module_class = FlaxViTGPT2LMForConditionalGenerationModule
         | 
| 450 | 
            +
                dtype: jnp.dtype = jnp.float32
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                def decode(
         | 
| 453 | 
            +
                    self,
         | 
| 454 | 
            +
                    input_ids,
         | 
| 455 | 
            +
                    encoder_outputs,
         | 
| 456 | 
            +
                    encoder_attention_mask: Optional[jnp.ndarray] = None,
         | 
| 457 | 
            +
                    attention_mask: Optional[jnp.ndarray] = None,
         | 
| 458 | 
            +
                    position_ids: Optional[jnp.ndarray] = None,
         | 
| 459 | 
            +
                    past_key_values: dict = None,
         | 
| 460 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 461 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 462 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 463 | 
            +
                    deterministic: bool = True,
         | 
| 464 | 
            +
                    params: dict = None,
         | 
| 465 | 
            +
                    dropout_rng: PRNGKey = None,
         | 
| 466 | 
            +
                ):
         | 
| 467 | 
            +
                    output_attentions = (
         | 
| 468 | 
            +
                        output_attentions
         | 
| 469 | 
            +
                        if output_attentions is not None
         | 
| 470 | 
            +
                        else self.config.output_attentions
         | 
| 471 | 
            +
                    )
         | 
| 472 | 
            +
                    output_hidden_states = (
         | 
| 473 | 
            +
                        output_hidden_states
         | 
| 474 | 
            +
                        if output_hidden_states is not None
         | 
| 475 | 
            +
                        else self.config.output_hidden_states
         | 
| 476 | 
            +
                    )
         | 
| 477 | 
            +
                    return_dict = (
         | 
| 478 | 
            +
                        return_dict if return_dict is not None else self.config.return_dict
         | 
| 479 | 
            +
                    )
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    encoder_hidden_states = encoder_outputs[0]
         | 
| 482 | 
            +
                    if encoder_attention_mask is None:
         | 
| 483 | 
            +
                        batch_size, sequence_length = encoder_hidden_states.shape[:2]
         | 
| 484 | 
            +
                        encoder_attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                    batch_size, sequence_length = input_ids.shape
         | 
| 487 | 
            +
                    if attention_mask is None:
         | 
| 488 | 
            +
                        attention_mask = jnp.ones((batch_size, sequence_length))
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    if position_ids is None:
         | 
| 491 | 
            +
                        if past_key_values is not None:
         | 
| 492 | 
            +
                            raise ValueError(
         | 
| 493 | 
            +
                                "Make sure to provide `position_ids` when passing `past_key_values`."
         | 
| 494 | 
            +
                            )
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 497 | 
            +
                            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
         | 
| 498 | 
            +
                        )
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                    # Handle any PRNG if needed
         | 
| 501 | 
            +
                    rngs = {}
         | 
| 502 | 
            +
                    if dropout_rng is not None:
         | 
| 503 | 
            +
                        rngs["dropout"] = dropout_rng
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    inputs = {"params": params or self.params}
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                    # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
         | 
| 508 | 
            +
                    # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
         | 
| 509 | 
            +
                    # it can be changed by FlaxGPT2Attention module
         | 
| 510 | 
            +
                    if past_key_values:
         | 
| 511 | 
            +
                        inputs["cache"] = past_key_values
         | 
| 512 | 
            +
                        mutable = ["cache"]
         | 
| 513 | 
            +
                    else:
         | 
| 514 | 
            +
                        mutable = False
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    def _decoder_forward(
         | 
| 517 | 
            +
                        module,
         | 
| 518 | 
            +
                        input_ids,
         | 
| 519 | 
            +
                        attention_mask,
         | 
| 520 | 
            +
                        position_ids,
         | 
| 521 | 
            +
                        **kwargs,
         | 
| 522 | 
            +
                    ):
         | 
| 523 | 
            +
                        decoder_module = module._get_decoder_module()
         | 
| 524 | 
            +
                        outputs = decoder_module(
         | 
| 525 | 
            +
                            input_ids,
         | 
| 526 | 
            +
                            attention_mask,
         | 
| 527 | 
            +
                            position_ids,
         | 
| 528 | 
            +
                            **kwargs,
         | 
| 529 | 
            +
                        )
         | 
| 530 | 
            +
                        lm_logits = outputs[0]
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                        return lm_logits, outputs
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    outputs = self.module.apply(
         | 
| 535 | 
            +
                        inputs,
         | 
| 536 | 
            +
                        input_ids=jnp.array(input_ids, dtype="i4"),
         | 
| 537 | 
            +
                        attention_mask=jnp.array(attention_mask, dtype="i4"),
         | 
| 538 | 
            +
                        position_ids=jnp.array(position_ids, dtype="i4"),
         | 
| 539 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 540 | 
            +
                        encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
         | 
| 541 | 
            +
                        output_attentions=output_attentions,
         | 
| 542 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 543 | 
            +
                        return_dict=return_dict,
         | 
| 544 | 
            +
                        deterministic=deterministic,
         | 
| 545 | 
            +
                        rngs=rngs,
         | 
| 546 | 
            +
                        mutable=mutable,
         | 
| 547 | 
            +
                        method=_decoder_forward,
         | 
| 548 | 
            +
                    )
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    if past_key_values is None:
         | 
| 551 | 
            +
                        lm_logits, outputs = outputs
         | 
| 552 | 
            +
                    else:
         | 
| 553 | 
            +
                        (lm_logits, outputs), past = outputs
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    if return_dict:
         | 
| 556 | 
            +
                        outputs = FlaxCausalLMOutputWithCrossAttentions(
         | 
| 557 | 
            +
                            logits=lm_logits,
         | 
| 558 | 
            +
                            hidden_states=outputs.decoder_hidden_states,
         | 
| 559 | 
            +
                            attentions=outputs.decoder_attentions,
         | 
| 560 | 
            +
                            cross_attentions=outputs.cross_attentions,
         | 
| 561 | 
            +
                        )
         | 
| 562 | 
            +
                    else:
         | 
| 563 | 
            +
                        outputs = (lm_logits,) + outputs[1:]
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    # add updated cache to model output
         | 
| 566 | 
            +
                    if past_key_values is not None and return_dict:
         | 
| 567 | 
            +
                        outputs["past_key_values"] = unfreeze(past["cache"])
         | 
| 568 | 
            +
                        return outputs
         | 
| 569 | 
            +
                    elif past_key_values is not None and not return_dict:
         | 
| 570 | 
            +
                        outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                    return outputs
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                def prepare_inputs_for_generation(
         | 
| 575 | 
            +
                    self,
         | 
| 576 | 
            +
                    input_ids,
         | 
| 577 | 
            +
                    max_length,
         | 
| 578 | 
            +
                    encoder_attention_mask: Optional[jnp.DeviceArray] = None,
         | 
| 579 | 
            +
                    attention_mask: Optional[jnp.DeviceArray] = None,
         | 
| 580 | 
            +
                    encoder_outputs=None,
         | 
| 581 | 
            +
                    **kwargs,
         | 
| 582 | 
            +
                ):
         | 
| 583 | 
            +
                    # initializing the cache
         | 
| 584 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
         | 
| 587 | 
            +
                    # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
         | 
| 588 | 
            +
                    # But since the decoder uses a causal mask, those positions are masked anyways.
         | 
| 589 | 
            +
                    # Thus we can create a single static attention_mask here, which is more efficient for compilation
         | 
| 590 | 
            +
                    extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
         | 
| 591 | 
            +
                    if attention_mask is not None:
         | 
| 592 | 
            +
                        position_ids = attention_mask.cumsum(axis=-1) - 1
         | 
| 593 | 
            +
                        extended_attention_mask = lax.dynamic_update_slice(
         | 
| 594 | 
            +
                            extended_attention_mask, attention_mask, (0, 0)
         | 
| 595 | 
            +
                        )
         | 
| 596 | 
            +
                    else:
         | 
| 597 | 
            +
                        position_ids = jnp.broadcast_to(
         | 
| 598 | 
            +
                            jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
         | 
| 599 | 
            +
                        )
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    return {
         | 
| 602 | 
            +
                        "past_key_values": past_key_values,
         | 
| 603 | 
            +
                        "encoder_outputs": encoder_outputs,
         | 
| 604 | 
            +
                        "encoder_attention_mask": encoder_attention_mask,
         | 
| 605 | 
            +
                        "attention_mask": extended_attention_mask,
         | 
| 606 | 
            +
                        "position_ids": position_ids,
         | 
| 607 | 
            +
                    }
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                def update_inputs_for_generation(self, model_outputs, model_kwargs):
         | 
| 610 | 
            +
                    model_kwargs["past_key_values"] = model_outputs.past_key_values
         | 
| 611 | 
            +
                    model_kwargs["position_ids"] = (
         | 
| 612 | 
            +
                        model_kwargs["position_ids"][:, -1:] + 1
         | 
| 613 | 
            +
                    )
         | 
| 614 | 
            +
                    return model_kwargs
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                @classmethod
         | 
| 617 | 
            +
                def from_vit_gpt2_pretrained(
         | 
| 618 | 
            +
                    cls,
         | 
| 619 | 
            +
                    vit_model_name_or_path: str = None,
         | 
| 620 | 
            +
                    gpt2_model_name_or_path: str = None,
         | 
| 621 | 
            +
                    *model_args,
         | 
| 622 | 
            +
                    **kwargs,
         | 
| 623 | 
            +
                ) -> FlaxViTGPT2LMPreTrainedModel:
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    kwargs_gpt2 = {
         | 
| 626 | 
            +
                        argument[len("gpt2_") :]: value
         | 
| 627 | 
            +
                        for argument, value in kwargs.items()
         | 
| 628 | 
            +
                        if argument.startswith("gpt2_")
         | 
| 629 | 
            +
                    }
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                    kwargs_vit = {
         | 
| 632 | 
            +
                        argument[len("vit_") :]: value
         | 
| 633 | 
            +
                        for argument, value in kwargs.items()
         | 
| 634 | 
            +
                        if argument.startswith("vit_")
         | 
| 635 | 
            +
                    }
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    # remove gpt2, vit kwargs from kwargs
         | 
| 638 | 
            +
                    for key in kwargs_gpt2.keys():
         | 
| 639 | 
            +
                        del kwargs["gpt2_" + key]
         | 
| 640 | 
            +
                    for key in kwargs_vit.keys():
         | 
| 641 | 
            +
                        del kwargs["vit_" + key]
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                    # Load and initialize the gpt2 and vit model
         | 
| 644 | 
            +
                    gpt2_model = kwargs_gpt2.pop("model", None)
         | 
| 645 | 
            +
                    if gpt2_model is None:
         | 
| 646 | 
            +
                        assert (
         | 
| 647 | 
            +
                            gpt2_model_name_or_path is not None
         | 
| 648 | 
            +
                        ), "If `model` is not defined as an argument, a `gpt2_model_name_or_path` has to be defined"
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                        if "config" not in kwargs_gpt2:
         | 
| 651 | 
            +
                            gpt2_config = GPT2Config.from_pretrained(gpt2_model_name_or_path)
         | 
| 652 | 
            +
                            kwargs_gpt2["config"] = gpt2_config
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                        kwargs_gpt2["config"].add_cross_attention = True
         | 
| 655 | 
            +
                        gpt2_model = FlaxGPT2LMHeadModel.from_pretrained(
         | 
| 656 | 
            +
                            gpt2_model_name_or_path, *model_args, **kwargs_gpt2
         | 
| 657 | 
            +
                        )
         | 
| 658 | 
            +
             | 
| 659 | 
            +
                    vit_model = kwargs_vit.pop("model", None)
         | 
| 660 | 
            +
                    if vit_model is None:
         | 
| 661 | 
            +
                        assert (
         | 
| 662 | 
            +
                            vit_model_name_or_path is not None
         | 
| 663 | 
            +
                        ), "If `model` is not defined as an argument, a `vit_model_name_or_path` has to be defined"
         | 
| 664 | 
            +
             | 
| 665 | 
            +
                        if "config" not in kwargs_vit:
         | 
| 666 | 
            +
                            vit_config = ViTConfig.from_pretrained(vit_model_name_or_path)
         | 
| 667 | 
            +
                            kwargs_vit["config"] = vit_config
         | 
| 668 | 
            +
             | 
| 669 | 
            +
                        vit_model = FlaxViTModel.from_pretrained(
         | 
| 670 | 
            +
                            vit_model_name_or_path, *model_args, **kwargs_vit
         | 
| 671 | 
            +
                        )
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                    # instantiate config with corresponding kwargs
         | 
| 674 | 
            +
                    dtype = kwargs.pop("dtype", jnp.float32)
         | 
| 675 | 
            +
                    config = ViTGPT2Config.from_vit_gpt2_configs(
         | 
| 676 | 
            +
                        vit_model.config, gpt2_model.config, **kwargs
         | 
| 677 | 
            +
                    )
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    # init model
         | 
| 680 | 
            +
                    model = cls(config, *model_args, dtype=dtype, **kwargs)
         | 
| 681 | 
            +
                    model.params["model"]["encoder"] = vit_model.params
         | 
| 682 | 
            +
                    model.params["model"]["decoder"] = gpt2_model.params
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    return model
         | 
