Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import jax.numpy as jnp | |
| from typing import List, Union | |
| # Defining cosine similarity using flax. | |
| from backend.config import MODELS_ID | |
| from backend.utils import load_model | |
| def cos_sim(a, b): | |
| return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b)) | |
| # We get similarity between embeddings. | |
| def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict): | |
| print(model_name) | |
| model = load_model(model_name, model_dict) | |
| # Creating embeddings | |
| if hasattr(model, 'encode'): | |
| anchor_emb = model.encode(anchor)[None, :] | |
| inputs_emb = model.encode(inputs) | |
| else: | |
| assert len(model) == 2 | |
| anchor_emb = model[0].encode(anchor)[None, :] | |
| inputs_emb = model[1].encode(inputs) | |
| # Obtaining similarity | |
| similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb))) | |
| # Returning a Pandas' dataframe | |
| d = {'inputs': inputs, | |
| 'score': [round(similarity[i], 3) for i in range(len(similarity))]} | |
| df = pd.DataFrame(d, columns=['inputs', 'score']) | |
| return df | |