Spaces:
Runtime error
Runtime error
Trent
commited on
Commit
·
75c3a89
1
Parent(s):
fa5d8a4
Search function
Browse files- .gitattributes +2 -0
- app.py +24 -6
- backend/config.py +4 -0
- backend/inference.py +39 -3
- backend/utils.py +31 -0
- data/.DS_Store +0 -0
- data/__init__.py +0 -0
- requirements.txt +2 -0
.gitattributes
CHANGED
|
@@ -14,3 +14,5 @@
|
|
| 14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.jsonl.gz filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -2,12 +2,12 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
from backend import inference
|
| 5 |
-
from backend.config import MODELS_ID, QA_MODELS_ID
|
| 6 |
|
| 7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
| 8 |
|
| 9 |
st.sidebar.title('Tasks')
|
| 10 |
-
menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search"
|
| 11 |
|
| 12 |
st.markdown('''
|
| 13 |
|
|
@@ -71,7 +71,7 @@ For more cool information on sentence embeddings, see the [sBert project](https:
|
|
| 71 |
|
| 72 |
n_texts = st.number_input(
|
| 73 |
f'''How many answers you want to compare with: '{anchor}'?''',
|
| 74 |
-
value=
|
| 75 |
min_value=2)
|
| 76 |
|
| 77 |
inputs = []
|
|
@@ -97,7 +97,25 @@ For more cool information on sentence embeddings, see the [sBert project](https:
|
|
| 97 |
st.line_chart(df_total)
|
| 98 |
|
| 99 |
elif menu == "Search":
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
from backend import inference
|
| 5 |
+
from backend.config import MODELS_ID, QA_MODELS_ID, SEARCH_MODELS_ID
|
| 6 |
|
| 7 |
st.title('Demo using Flax-Sentence-Tranformers')
|
| 8 |
|
| 9 |
st.sidebar.title('Tasks')
|
| 10 |
+
menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search"], index=0)
|
| 11 |
|
| 12 |
st.markdown('''
|
| 13 |
|
|
|
|
| 71 |
|
| 72 |
n_texts = st.number_input(
|
| 73 |
f'''How many answers you want to compare with: '{anchor}'?''',
|
| 74 |
+
value=10,
|
| 75 |
min_value=2)
|
| 76 |
|
| 77 |
inputs = []
|
|
|
|
| 97 |
st.line_chart(df_total)
|
| 98 |
|
| 99 |
elif menu == "Search":
|
| 100 |
+
st.header('SEARCH')
|
| 101 |
+
st.markdown('''
|
| 102 |
+
**Instructions**: Make a query for anything related to "Python" and the model you choose will return you similar queries.
|
| 103 |
+
|
| 104 |
+
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
|
| 105 |
+
''')
|
| 106 |
+
|
| 107 |
+
select_models = st.multiselect("Choose models", options=list(SEARCH_MODELS_ID), default=list(SEARCH_MODELS_ID)[0])
|
| 108 |
+
|
| 109 |
+
anchor = st.text_input(
|
| 110 |
+
'Please enter here your query about "Python", we will look for similar ones:',
|
| 111 |
+
value="How do I sort a dataframe by column"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
n_texts = st.number_input(
|
| 115 |
+
f'''How many similar queries you want?''',
|
| 116 |
+
value=3,
|
| 117 |
+
min_value=2)
|
| 118 |
|
| 119 |
+
if st.button('Give me my search.'):
|
| 120 |
+
results = {model: inference.text_search(anchor, n_texts, model, QA_MODELS_ID) for model in select_models}
|
| 121 |
+
st.table(pd.DataFrame(results[select_models[0]]).T)
|
backend/config.py
CHANGED
|
@@ -7,4 +7,8 @@ QA_MODELS_ID = dict(
|
|
| 7 |
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A'],
|
| 8 |
mpnet_qa='flax-sentence-embeddings/mpnet_stackexchange_v1',
|
| 9 |
distilbert_qa = 'flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
)
|
|
|
|
| 7 |
'flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A'],
|
| 8 |
mpnet_qa='flax-sentence-embeddings/mpnet_stackexchange_v1',
|
| 9 |
distilbert_qa = 'flax-sentence-embeddings/multi-qa_v1-distilbert-cls_dot'
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
SEARCH_MODELS_ID = dict(
|
| 13 |
+
mpnet_qa='flax-sentence-embeddings/mpnet_stackexchange_v1'
|
| 14 |
)
|
backend/inference.py
CHANGED
|
@@ -1,11 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
| 2 |
import jax.numpy as jnp
|
|
|
|
| 3 |
|
|
|
|
| 4 |
from typing import List, Union
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
from backend.config import MODELS_ID
|
| 8 |
-
from backend.utils import load_model
|
| 9 |
|
| 10 |
|
| 11 |
def cos_sim(a, b):
|
|
@@ -35,3 +40,34 @@ def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict:
|
|
| 35 |
df = pd.DataFrame(d, columns=['inputs', 'score'])
|
| 36 |
|
| 37 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
import jax.numpy as jnp
|
| 7 |
+
import tqdm
|
| 8 |
|
| 9 |
+
from sentence_transformers import util
|
| 10 |
from typing import List, Union
|
| 11 |
+
import torch
|
| 12 |
|
| 13 |
+
from backend.utils import load_model, filter_questions, load_embeddings
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def cos_sim(a, b):
|
|
|
|
| 40 |
df = pd.DataFrame(d, columns=['inputs', 'score'])
|
| 41 |
|
| 42 |
return df
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Search
|
| 46 |
+
def text_search(anchor: str, n_answers: int, model_name: str, model_dict: dict):
|
| 47 |
+
# Proceeding with model
|
| 48 |
+
print(model_name)
|
| 49 |
+
assert model_name == "mpnet_qa"
|
| 50 |
+
model = load_model(model_name, model_dict)
|
| 51 |
+
|
| 52 |
+
# Creating embeddings
|
| 53 |
+
query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
|
| 54 |
+
|
| 55 |
+
print("loading embeddings")
|
| 56 |
+
corpus_emb = load_embeddings()
|
| 57 |
+
|
| 58 |
+
# Getting hits
|
| 59 |
+
hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
|
| 60 |
+
|
| 61 |
+
filtered_posts = filter_questions("python")
|
| 62 |
+
print(f"{len(filtered_posts)} posts found with tag: python")
|
| 63 |
+
|
| 64 |
+
hits_titles = []
|
| 65 |
+
hits_scores = []
|
| 66 |
+
urls = []
|
| 67 |
+
for hit in hits:
|
| 68 |
+
post = filtered_posts[hit['corpus_id']]
|
| 69 |
+
hits_titles.append(post['title'])
|
| 70 |
+
hits_scores.append("{:.3f}".format(hit['score']))
|
| 71 |
+
urls.append(f"https://stackoverflow.com/q/{post['id']}")
|
| 72 |
+
|
| 73 |
+
return hits_titles, hits_scores, urls
|
backend/utils.py
CHANGED
|
@@ -1,4 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
|
| 4 |
|
|
@@ -13,3 +19,28 @@ def load_model(model_name, model_dict):
|
|
| 13 |
output = [SentenceTransformer(name) for name in model_ids]
|
| 14 |
|
| 15 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
import streamlit as st
|
| 6 |
+
import torch
|
| 7 |
+
import tqdm
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
|
| 10 |
|
|
|
|
| 19 |
output = [SentenceTransformer(name) for name in model_ids]
|
| 20 |
|
| 21 |
return output
|
| 22 |
+
|
| 23 |
+
@st.cache(allow_output_mutation=True)
|
| 24 |
+
def load_embeddings():
|
| 25 |
+
# embedding pre-generated
|
| 26 |
+
corpus_emb = torch.from_numpy(np.loadtxt('./data/stackoverflow-titles-mpnet-emb.csv', max_rows=10000))
|
| 27 |
+
return corpus_emb.float()
|
| 28 |
+
|
| 29 |
+
@st.cache(allow_output_mutation=True)
|
| 30 |
+
def filter_questions(tag, max_questions=10000):
|
| 31 |
+
posts = []
|
| 32 |
+
max_posts = 6e6
|
| 33 |
+
with gzip.open("./data/stackoverflow-titles.jsonl.gz", "rt") as fIn:
|
| 34 |
+
for line in tqdm.auto.tqdm(fIn, total=max_posts, desc="Load data"):
|
| 35 |
+
posts.append(json.loads(line))
|
| 36 |
+
|
| 37 |
+
if len(posts) >= max_posts:
|
| 38 |
+
break
|
| 39 |
+
|
| 40 |
+
filtered_posts = []
|
| 41 |
+
for post in posts:
|
| 42 |
+
if tag in post["tags"]:
|
| 43 |
+
filtered_posts.append(post)
|
| 44 |
+
if len(filtered_posts) >= max_questions:
|
| 45 |
+
break
|
| 46 |
+
return filtered_posts
|
data/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
data/__init__.py
ADDED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -3,3 +3,5 @@ pandas
|
|
| 3 |
jax
|
| 4 |
jaxlib
|
| 5 |
streamlit
|
|
|
|
|
|
|
|
|
| 3 |
jax
|
| 4 |
jaxlib
|
| 5 |
streamlit
|
| 6 |
+
numpy
|
| 7 |
+
torch
|