Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer | |
| from datasets import load_dataset | |
| # 1️⃣ Modell & Tokenizer laden | |
| model_name = "allenai/scibert_scivocab_uncased" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) | |
| # 2️⃣ Dataset laden (mit spezifischer Konfiguration: "arxiv" oder "pubmed") | |
| dataset = load_dataset("armanc/scientific_papers", "arxiv", trust_remote_code=True) # Oder "pubmed" | |
| # 3️⃣ Tokenisierung der Texte | |
| def tokenize_function(examples): | |
| return tokenizer(examples["text"], padding="max_length", truncation=True) | |
| tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # 4️⃣ Trainingsparameter setzen | |
| training_args = TrainingArguments( | |
| output_dir="./results", | |
| evaluation_strategy="epoch", | |
| save_strategy="epoch", | |
| per_device_train_batch_size=8, | |
| per_device_eval_batch_size=8, | |
| num_train_epochs=3, | |
| weight_decay=0.01, | |
| logging_dir="./logs", | |
| ) | |
| # 5️⃣ Training starten | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["validation"], | |
| ) | |
| trainer.train() | |
| # 6️⃣ Speichern des Modells nach dem Training | |
| model.save_pretrained("./trained_model") | |
| tokenizer.save_pretrained("./trained_model") | |
| print(dataset) # Zeigt die Struktur des Datensatzes | |
| print("✅ Training abgeschlossen! Modell gespeichert.") |