Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer | |
| import gradio as gr | |
| import torch | |
| # Schritt 1: Dataset laden und überprüfen | |
| # Falls "KeyError: 'text'" auftritt, Spaltennamen prüfen | |
| dataset = load_dataset("armanc/scientific_papers", "arxiv", trust_remote_code=True) # Falls du PubMed nutzt, ersetze "arxiv" mit "pubmed" | |
| print(dataset) | |
| # Schritt 2: Tokenizer vorbereiten | |
| tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased") | |
| def tokenize_function(examples): | |
| return tokenizer(examples["abstract"], padding="max_length", truncation=True, max_length=151) | |
| dataset = dataset.map(tokenize_function, batched=True) | |
| # Schritt 3: Modell laden | |
| model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3) | |
| # Anpassung für Trainingsdaten: Label-Spalte hinzufügen | |
| def add_labels(example): | |
| example["labels"] = 1 # Dummy-Label, falls nicht vorhanden (1=positiv, 0=negativ, 2=neutral o.Ä.) | |
| return example | |
| dataset = dataset.map(add_labels) | |
| # Schritt 4: Trainingsparameter setzen | |
| training_args = TrainingArguments( | |
| output_dir="./results", | |
| eval_strategy="epoch", | |
| per_device_train_batch_size=8, | |
| per_device_eval_batch_size=8, | |
| num_train_epochs=3, | |
| learning_rate=5e-5, | |
| weight_decay=0.01, | |
| logging_dir="./logs", | |
| logging_steps=500, | |
| ) | |
| # Schritt 5: Trainer erstellen und Training starten | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=dataset["train"], | |
| eval_dataset=dataset["validation"] | |
| ) | |
| trainer.train() | |
| # Schritt 6: Modell speichern | |
| trainer.save_model("./trained_model") | |
| tokenizer.save_pretrained("./trained_model") | |
| # Schritt 7: Modell für Gradio bereitstellen | |
| def predict(text): | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=151) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probabilities = torch.nn.functional.softmax(logits, dim=-1) | |
| return {f"Label {i}": float(probabilities[0][i]) for i in range(len(probabilities[0]))} | |
| iface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Textbox(lines=5, placeholder="Paste an abstract here..."), | |
| outputs=gr.Label(), | |
| title="Scientific Paper Evaluator", | |
| description="This AI model scores scientific papers based on relevance, uniqueness, and redundancy." | |
| ) | |
| iface.launch() | |