Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,13 @@ dataset = dataset.map(tokenize_function, batched=True)
|
|
| 20 |
# Schritt 3: Modell laden
|
| 21 |
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Schritt 4: Trainingsparameter setzen
|
| 24 |
training_args = TrainingArguments(
|
| 25 |
output_dir="./results",
|
|
@@ -39,6 +46,7 @@ trainer = Trainer(
|
|
| 39 |
args=training_args,
|
| 40 |
train_dataset=dataset["train"],
|
| 41 |
eval_dataset=dataset["validation"],
|
|
|
|
| 42 |
)
|
| 43 |
trainer.train()
|
| 44 |
|
|
|
|
| 20 |
# Schritt 3: Modell laden
|
| 21 |
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
|
| 22 |
|
| 23 |
+
# Anpassung für Trainingsdaten: Label-Spalte hinzufügen
|
| 24 |
+
def add_labels(example):
|
| 25 |
+
example["labels"] = 1 # Dummy-Label, falls nicht vorhanden (1=positiv, 0=negativ, 2=neutral o.Ä.)
|
| 26 |
+
return example
|
| 27 |
+
|
| 28 |
+
dataset = dataset.map(add_labels)
|
| 29 |
+
|
| 30 |
# Schritt 4: Trainingsparameter setzen
|
| 31 |
training_args = TrainingArguments(
|
| 32 |
output_dir="./results",
|
|
|
|
| 46 |
args=training_args,
|
| 47 |
train_dataset=dataset["train"],
|
| 48 |
eval_dataset=dataset["validation"],
|
| 49 |
+
compute_loss=lambda model, inputs: model(**inputs).loss # Fix für fehlende Loss-Berechnung
|
| 50 |
)
|
| 51 |
trainer.train()
|
| 52 |
|